矿井水灾感知与水源判定方法研究

孙继平, 靳春海

孙继平,靳春海.矿井水灾感知与水源判定方法研究[J].工矿自动化,2019,45(4):1-5.. DOI: 10.13272/j.issn.1671-251x.17416
引用本文: 孙继平,靳春海.矿井水灾感知与水源判定方法研究[J].工矿自动化,2019,45(4):1-5.. DOI: 10.13272/j.issn.1671-251x.17416
SUN Jiping, JIN Chunhai. Research on methods of mine flood perception and water source determination[J]. Journal of Mine Automation, 2019, 45(4): 1-5. DOI: 10.13272/j.issn.1671-251x.17416
Citation: SUN Jiping, JIN Chunhai. Research on methods of mine flood perception and water source determination[J]. Journal of Mine Automation, 2019, 45(4): 1-5. DOI: 10.13272/j.issn.1671-251x.17416

矿井水灾感知与水源判定方法研究

基金项目: 

国家重点研发计划资助项目(2016YFC0801800)

详细信息
  • 中图分类号: TD745

Research on methods of mine flood perception and water source determination

  • 摘要: 在分析水质监测法、涌水量监测法、水温监测法、气温监测法、湿度监测法、水位监测法、电阻率监测法、应力监测法、微震监测法、水文钻孔法等矿井水灾感知方法原理和特点的基础上,提出了基于图像监测的矿井水灾感知方法和基于图像的大数据矿井水灾感知与水源判定方法,得出以下结论:① 水质监测法不但可感知矿井水灾,还可判定引发水灾的水源,该方法感知地表水和老空水引发的矿井水灾准确率较高。② 基于时间的涌水量监测法具有准确率高的优点,但部署复杂、实时性差;基于流速的涌水量监测法具有操作简单、实时性好等优点,但测量误差较大。③ 水温监测法不但可感知矿井水灾,还可判定引发水灾的水源,但不适用于矿井水灾水源温度与正常矿井涌水温度差异较小的水灾感知。④ 气温监测法具有简单、方便等优点,但受煤炭自燃等矿井火灾、瓦斯与煤尘爆炸、地面气温、矿井通风量、井下设备开停、井下作业人员数量等影响,不适用于矿井水灾水源温度与正常矿井涌水温度差异较小的水灾感知。⑤ 湿度监测法具有简单、方便等优点,但受地面空气湿度和温度、矿井通风量、煤炭自燃等矿井火灾等影响。⑥ 通过水位监测法可及时掌握地表水和地下水水源变化,但需探明老空水位置等。⑦ 电阻率监测法具有响应快、灵敏度高等优点,但准确率受采掘环境影响大,电极布置困难。⑧ 应力监测法和微震监测法具有实时性好的优点,但受煤与瓦斯突出、冲击地压等影响,需与其他矿井水灾感知方法配合使用。⑨ 水文钻孔法具有信息量大的优点,但需与其他矿井水灾感知方法配合使用。⑩ 基于图像监测的矿井水灾感知方法具有非接触、实时快速、监测范围广、部署与安装简单、成本低、使用维护方便等优点。 基于图像的大数据矿井水灾感知与水源判定方法同时监测矿井水、导水通道和水源,不但可感知矿井水灾,还可判定引发水灾的水源,具有可靠性高的优点。
    Abstract: Based on analysis of principle and characteristics of mine flood perception methods such as water quality monitoring method, water inflow monitoring method, water temperature monitoring method, temperature monitoring method, humidity monitoring method, water level monitoring method, resistivity monitoring method, stress monitoring method, microseismic monitoring method and hydrological drilling method, mine flood perception method based on image monitoring and image-based big data mine flood perception and water source determination method were proposed. Conclusions were got as following: ① The water quality monitoring method can not only perceive flood, but also determine water source that causes flood, which has high perception accuracy of mine flood caused by surface water and goaf water. ② Time-based water inflow monitoring method has high accuracy, but complex deployment and poor real-time performance. The water inflow monitoring method based on flow velocity has advantages of simple operation and good real-time performance, but large measurement error. ③ The water temperature monitoring method can not only perceive mine flood, but also determine water source that causes flood, but it is not applicable to the flood perception that difference between mine flood water source temperature and normal mine water inflow temperature is small. ④ The temperature monitoring method has advantages of simplicity and convenience, but it is affected by mine fire such as coal spontaneous combustion, explosion of gas and coal dust, surface air temperature, mine ventilation quantity, underground equipments starting and stopping, and number of underground workers. The temperature monitoring method is not applicable to the flood perception that difference between mine flood water source temperature and normal mine water inflow temperature is small. ⑤ The humidity monitoring method has advantages of simplicity and convenience, but it is affected by humidity and temperature of surface air, mine ventilation quantity, and mine fire such as coal spontaneous combustion. ⑥ Change of surface water and groundwater source can be timely grasped by the water level monitoring method, but location of goaf water needs to be proved. ⑦ The resistivity monitoring method has advantages of fast response and high sensitivity, but accuracy is greatly affected by mining environment, and electrode arrangement is difficult. ⑧ The stress monitoring method and the microseismic monitoring method have advantages of good real-time performance, but due to impact of coal and gas outburst and rock burst pressure, the methods need to be used together with other mine flood perception methods. ⑨ The hydrological drilling method has advantage of large amount of information, but it needs to be used together with other mine flood perception methods. ⑩ The mine flood perception method based on image monitoring has advantages of non-contact, real-time and rapid, wide monitoring range, simple deployment and installation, low cost and convenient use and maintenance. Image-based big data mine flood perception and water source determination method simultaneously monitors mine water, water conducted channel and water source, which can not only perceive mine flood, but also determine water source that causes flood, and has advantage of high reliability.
  • 期刊类型引用(15)

    1. 孙继平, 龚大立. 煤矿瓦斯抽采和探水作业智能管理系统标准研究制定. 工矿自动化. 2025(06) 本站查看
    2. 尹尚先, 丁莹莹, 连会青, 董东林, 杜通, 尹慧超, 赵鹏, 张义安, 王雄. 矿井水监测预警系统研究进展及发展方向. 煤田地质与勘探. 2025(07) 百度学术
    3. 赵少攀,杨森,张东兴,常成,闫佳喆,刘念,麻倩倩,张茜. 基于水化学和D、~(18)O同位素的豫西某矿山地下水水源识别. 西北地质. 2025(02): 313-322 . 百度学术
    4. 董书宁. 人工智能技术在煤矿水害防治智能化发展中的应用. 煤矿安全. 2023(05): 1-12 . 百度学术
    5. 孙继平,程继杰. 煤矿冲击地压和煤与瓦斯突出感知报警方法研究. 工矿自动化. 2022(01): 1-6 . 本站查看
    6. 赵森. 冲击地压矿井微震监测技术在防治水中的应用研究. 煤炭与化工. 2022(01): 42-46 . 百度学术
    7. 闫鹏程,张孝飞,尚松行,张超银. LIF结合LSTM神经网络的矿井水源识别. 光谱学与光谱分析. 2022(10): 3091-3096 . 百度学术
    8. 孙继平,余星辰. 基于声音识别的煤矿重特大事故报警方法研究. 工矿自动化. 2021(02): 1-5+44 . 本站查看
    9. 孙继平. 煤矿瓦斯和煤尘爆炸感知报警与爆源判定方法研究. 工矿自动化. 2020(06): 1-5+11 . 本站查看
    10. 闫鹏程,尚松行,周孟然,胡锋,刘瑜. 基于激光诱导荧光技术的煤矿水源识别研究. 光谱学与光谱分析. 2020(07): 2176-2181 . 百度学术
    11. 曹玉超. 基于灰度共生矩阵与回归分析的矿井水灾感知. 工矿自动化. 2020(09): 94-97 . 本站查看
    12. 曹玉超. 基于Gabor域时空泛化建模的矿井水灾感知方法. 工矿自动化. 2020(10): 76-79+86 . 本站查看
    13. 孙继平,靳春海,曹玉超. 基于视频图像的矿井水灾识别及趋势预测方法研究. 工矿自动化. 2019(07): 1-4+16 . 本站查看
    14. 孙继平,曹玉超. 基于图像纹理特征的矿井水灾感知方法. 煤炭学报. 2019(09): 2936-2944 . 百度学术
    15. 曹玉超,范伟强. 基于不同深度识别算法的矿井水位标尺刻度识别性能分析与研究. 煤炭学报. 2019(11): 3529-3538 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  81
  • HTML全文浏览量:  10
  • PDF下载量:  18
  • 被引次数: 21
出版历程
  • 刊出日期:  2019-04-19

目录

    JIN Chunhai

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回