矿用电动机振动信号早期故障特征提取方法

张建公

张建公.矿用电动机振动信号故障特征提取方法[J].工矿自动化,2019,45(5):96-99.. DOI: 10.13272/j.issn.1671-251x.17399
引用本文: 张建公.矿用电动机振动信号故障特征提取方法[J].工矿自动化,2019,45(5):96-99.. DOI: 10.13272/j.issn.1671-251x.17399
ZHANG Jiangong. Early fault feature extraction method of vibration signal of mine-used motor[J]. Journal of Mine Automation, 2019, 45(5): 96-99. DOI: 10.13272/j.issn.1671-251x.17399
Citation: ZHANG Jiangong. Early fault feature extraction method of vibration signal of mine-used motor[J]. Journal of Mine Automation, 2019, 45(5): 96-99. DOI: 10.13272/j.issn.1671-251x.17399

矿用电动机振动信号早期故障特征提取方法

详细信息
  • 中图分类号: TD67

Early fault feature extraction method of vibration signal of mine-used motor

  • 摘要: 针对现有矿用电动机振动信号故障特征提取方法存在依赖参数设置、频率混叠、信号失真等问题,提出了一种基于双树复小波变换的矿用电动机振动信号早期故障特征提取方法。利用双树复小波变换对采集的矿用电动机振动信号进行分解,得到各层双树复小波系数,并采用软阈值滤波对各层双树复小波系数进行滤波处理,滤波处理后的双树复小波系数经双树复小波变换重构获得去噪信号。应用结果表明,该方法能有效去除电动机振动信号中噪声,提取的早期故障特征能很好地反映电动机实际运行工况,为电动机早期故障诊断提供了有效依据。
    Abstract: In view of problems of parameter setting, frequency aliasing and signal distortion existing in current fault feature extraction methods of vibration signal of mine-used motor, an early fault feature extraction method of vibration signal of mine-used motor based on dual-tree complex wavelet transform was proposed. Firstly, collected vibration signal of mine-used motor is decomposed by using dual-tree complex wavelet transform, so as to obtain dual-tree complex wavelet coefficients of each layer. Then soft threshold filtering is used to filter the dual-tree complex wavelet coefficients of each layer. At last, denoising signal is obtained by reconstruction of the filtered dual-tree complex wavelet coefficients. The application results show that the method can effectively remove noise in the motor vibration signal, and extracted early fault feature can reflect actual operating condition of motor, which provides an effective basis for early fault diagnosis of motor.
  • 期刊类型引用(4)

    1. 曹现刚,段雍,王国法,赵江滨,任怀伟,赵福媛,杨鑫,张鑫媛,樊红卫,薛旭升,李曼. 煤矿设备全寿命周期健康管理与智能维护研究综述. 煤炭学报. 2025(01): 694-714 . 百度学术
    2. 上官星驰,张晓良,刘朝,石会,王嘉宇. 基于改进特征提取算法及胶囊网络的设备故障诊断研究. 工矿自动化. 2024(S1): 146-150 . 本站查看
    3. 周坪,马国庆,周公博,马天兵,李远博. 智能化带式输送机健康监测技术研究综述. 仪器仪表学报. 2023(12): 1-21 . 百度学术
    4. 张明,陈卫红. 造纸机械设备故障振动信号实时监测系统设计. 造纸科学与技术. 2021(05): 32-36+41 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  116
  • HTML全文浏览量:  8
  • PDF下载量:  13
  • 被引次数: 5
出版历程
  • 刊出日期:  2019-05-19

目录

    /

    返回文章
    返回