Volume 49 Issue 5
May  2023
Turn off MathJax
Article Contents
QIN Jiaxin, GE Shuwei, LONG Fengqi, et al. Spatiotemporal distribution prediction of gas concentration based on GCN-GRU[J]. Journal of Mine Automation,2023,49(5):82-89, 111.  doi: 10.13272/j.issn.1671-251x.2022060105
Citation: QIN Jiaxin, GE Shuwei, LONG Fengqi, et al. Spatiotemporal distribution prediction of gas concentration based on GCN-GRU[J]. Journal of Mine Automation,2023,49(5):82-89, 111.  doi: 10.13272/j.issn.1671-251x.2022060105

Spatiotemporal distribution prediction of gas concentration based on GCN-GRU

doi: 10.13272/j.issn.1671-251x.2022060105
  • Received Date: 2022-06-29
  • Rev Recd Date: 2023-05-09
  • Available Online: 2022-12-01
  • In the complex environment of coal mines, the prediction precision of traditional gas concentration prediction models is relatively low. Although the traditional gas concentration prediction model is optimized by introducing various optimization algorithms to improve the gas concentration prediction accuracy. But modeling only from the time dimension ignores the spatial features of gas concentration. This can easily lead to the loss of important prior knowledge and affect the prediction effect. In order to solve the above problems, a gas concentration spatiotemporal distribution prediction model based on graph convolutional networks (GCN) and gated recurrent unit (GRU) is proposed. Firstly, the historical data of gas concentration is preprocessed. A gas concentration spatial node graph is constructed based on the spatial distance between each collection node. The graph is used to model the complex dependency relationships between nodes. Secondly, at each sampling time point, the gas concentration and distance weight parameters between nodes are used as inputs to obtain the spatial node graph structure of gas. After that, GCN is used for spatial feature adaptive learning and graph convolution operation to obtain the spatial features of gas concentration. Then, the spatial feature information of gas concentration is transformed into sequence data and input to GRU. Finally, GRU processes the gas spatial feature information composed of each time under the time series. Through sequence-to-sequence based models and autoencoders, GRU generates model prediction results. The experimental results show the following points. ① The GCN-GRU model can accurately predict the overall trend of gas concentration changes. The fit between the predicted results and actual data is better than the historical average (HA) model and support vector regression (SVR) model. ② The root mean square error of GCN-GRU model is reduced by 0.5%, 71.4% and 37.9% respectively compared with HA model, SVR model and autoregressive integrated moving average model (ARIMA) model. The average absolute error of GCN-GRU model is reduced by 10.5%, 82.4% and 82.4% respectively compared with HA model, SVR model and ARIMA model. The accuracy of GCN-GRU model is improved by 0.06%, 17.7% and 13.8% respectively compared with HA model, SVR model and ARIMA model. The results indicate that GCN-GRU model has strong robustness, and the generalization performance is good. ③ The GCN-GRU model pays more attention to the influence of important features in the preorder than HA model, SVR model, and ARIMA model. This is mainly because the two gates of GRU focus on the temporal features of the data. While retaining the gating function, GRU reduces training parameters, improves model training efficiency to a certain extent, and reduces training duration.

     

  • loading
  • [1]
    秦玉金,苏伟伟,姜文忠,等. 我国矿井瓦斯涌出量预测技术研究进展及发展方向[J]. 煤矿安全,2020,51(10):52-59.

    QIN Yujin,SU Weiwei,JIANG Wenzhong,et al. Research progress and development direction of mine gas emission forecast technology in China[J]. Safety in Coal Mines,2020,51(10):52-59.
    [2]
    王雨虹,王淑月,王志中,等. 基于改进蝗虫算法优化长短时记忆神经网络的多参数瓦斯浓度预测模型研究[J]. 传感技术学报,2021,34(9):1196-1203.

    WANG Yuhong,WANG Shuyue,WANG Zhizhong,et al. Multi-Parameter gas concentration prediction model based on improved locust algorithm to optimize long and short time memory neural network[J]. Chinese Journal of Sensors and Actuators,2021,34(9):1196-1203.
    [3]
    戚昱. 基于信息融合和GA−BP的煤矿瓦斯浓度预测方法研究[J]. 煤炭技术,2022,41(6):159-161.

    QI Yu. Research on coal mine gas concentration prediction method based on information fusion and GA-BP[J]. Coal Technology,2022,41(6):159-161.
    [4]
    冉啟华,吴何碧,丁力生,等. 基于A−GRU的瓦斯浓度序列预测研究[J]. 软件导刊,2022,21(5):38-42.

    RAN Qihua,WU Hebi,DING Lisheng,et al. Research on gas concentration sequence prediction based on A-GRU[J]. Software Guide,2022,21(5):38-42.
    [5]
    梁运培,栗小雨,李全贵,等. 基于CS−LSTM的工作面瓦斯浓度智能预测研究[J]. 矿业安全与环保,2022,49(4):80-86.

    LIANG Yunpei,LI Xiaoyu,LI Quangui,et al. Research on intelligent prediction of gas concentration in working face based on CS-LSTM[J]. Mining Safety & Environmental Protection,2022,49(4):80-86.
    [6]
    付华,刘雨竹,徐楠,等. 基于多传感器−深度长短时记忆网络融合的瓦斯浓度预测研究[J]. 传感技术学报,2021,34(6):784-790. doi: 10.3969/j.issn.1004-1699.2021.06.011

    FU Hua,LIU Yuzhu,XU Nan,et al. Research on gas concentration prediction based on multi-sensor-deep long short-term memory network fusion[J]. Chinese Journal of Sensors and Actuators,2021,34(6):784-790. doi: 10.3969/j.issn.1004-1699.2021.06.011
    [7]
    吴响. 煤矿瓦斯场分布演化规律及其时空建模研究[D]. 徐州: 中国矿业大学, 2014.

    WU Xiang. Study on the evolution law of coal mine gas distribution field and its spatio-temporal modeling[D]. Xuzhou: China University of Mining and Technology, 2014.
    [8]
    SCARSELLI F,GORI M,TSOI A C,et al. The graph neural network model[J]. IEEE Transactions on Neural Networks,2009,20(1):61-80. doi: 10.1109/TNN.2008.2005605
    [9]
    梁宏涛,刘硕,杜军威,等. 深度学习应用于时序预测研究综述[J]. 计算机科学与探索,2023(5):1-21.

    LIANG Hongtao,LIU Shuo,DU Junwei,et al. Review of deep learning applied to time series prediction[J]. Journal of Frontiers of Computer Science and Technolog,2023(5):1-21.
    [10]
    李欢. 基于时空序列的瓦斯浓度预测方法研究[D]. 徐州: 中国矿业大学, 2019.

    LI Huan. The research of gas concentration prediction method based on space-time sequence[D]. Xuzhou: China University of Mining and Technology, 2019.
    [11]
    AQ 1029−2019 煤矿安全监控系统及检测仪器使用管理规范[S].

    AQ 1029-2019 Application and management standard for coal mine safety monitoring system and detector[S].
    [12]
    CUI Zhiyong,HENRICKSON K,KE Ruimin,et al. Traffic graph convolutional recurrent neural network:a deep learning framework for network-scale traffic learning and forecasting[J]. IEEE Transactions on Intelligent Transportation Systems,2020,21(11):4883-4894. doi: 10.1109/TITS.2019.2950416
    [13]
    徐冰冰,岑科廷,黄俊杰,等. 图卷积神经网络综述[J]. 计算机学报,2020,43(5):755-780.

    XU Bingbing,CEN Keting,HUANG Junjie,et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers,2020,43(5):755-780.
    [14]
    FEY M, LENSSEN J E. Fast graph representation learning with PyTorch geometric[C]. International Conference on Learning Representations, New Orleans, 2019.
    [15]
    丁遥,张志利,赵晓枫,等. 半监督局部特征保留图卷积高光谱图像分类[J]. 北京航空航天大学学报,2023(5):1-12.

    DING Yao,ZHANG Zhili,ZHAO Xiaofeng,et al. Semi-supervised locality preserving dense graph convolution for hyperspectral image classification[J]. Journal of Beijing University of Aeronautics and Astronautics,2023(5):1-12.
    [16]
    YU Bing, YIN Haoteng, ZHU Zhanxing. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]. International Joint Conference on Artificial Intelligence, Stockholm, 2018: 3634-3640.
    [17]
    张世琨,谢睿,叶蔚,等. 基于关键词的代码自动摘要[J]. 计算机研究与发展,2020,57(9):1987-2000.

    ZHANG Shikun,XIE Rui,YE Wei,et al. Keyword-based source code summarization[J]. Journal of Computer Research and Development,2020,57(9):1987-2000.
    [18]
    金季豪,阮彤,高大启,等. 语义图驱动的面向复杂逻辑关系的自然语言问答[J]. 中文信息学报,2021,35(12):122-132.

    JIN Jihao,RUAN Tong,GAO Daqi,et al. Semantic graph driven question answering towards complex logical rrelationships[J]. Journal of Chinese Information Processing,2021,35(12):122-132.
    [19]
    WEISS R J, CHOROWSKI J, JAITLY N, et al. Sequence-to-sequence models can directly transcribe foreign speech[C]. Annual Conference of the International Speech Communication Association (InterSpeech), Stockholm, 2017.
    [20]
    MAZUMDAR S, KUMAR A S. Forecasting data center resource usage: an experimental comparison with time-series methods[M]. Cham: Springer International Publishing, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (162) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return