SUN Liutao, DUAN Yujian, HUANG Junze. Optimization of index gases and division method of spontaneous combustion "three zones" in 10 coal seam of Qingdong Coal Mine[J]. Journal of Mine Automation, 2018, 44(11): 56-61. DOI: 10.13272/j.issn.1671—251x.2018070050
Citation: SUN Liutao, DUAN Yujian, HUANG Junze. Optimization of index gases and division method of spontaneous combustion "three zones" in 10 coal seam of Qingdong Coal Mine[J]. Journal of Mine Automation, 2018, 44(11): 56-61. DOI: 10.13272/j.issn.1671—251x.2018070050

Optimization of index gases and division method of spontaneous combustion "three zones" in 10 coal seam of Qingdong Coal Mine

More Information
  • In view of problem of natural fire on 1078 working face of Qingdong Coal Mine, through a combination of laboratory research and on—site testing, the main and auxiliary indicators of spontaneous combustion index gases were optimized: CO and C2H4 can be used as main indexes of oxidation and spontaneous combustion of coal in 10 coal seam, olefin ratio and alkane ratio are used as auxiliary indexes of oxidizing spontaneous combustion index gas of coal in 10 coal seam. The spontaneous combustion "three zones" in goaf were divided by two indicators of oxygen concentration variation law and temperature change trend in goaf: the heat dissipation zone is 0~31 m from the working face, the spontaneous combustion zone is 31~78 m from the working face, and the suffocation zone is 78 m far away from the working face. The research results provide scientific basis and theoretical guidance for natural fire control on 1078 working face.
  • Related Articles

    [1]MENG Hailun, CHENG Xianggang, QIAO Wei. Research on the evolution and prediction of the heights of water-conducting fracture zones in overlying rocks during layered mining of extremely thick coal seams[J]. Journal of Mine Automation, 2024, 50(12): 67-75. DOI: 10.13272/j.issn.1671-251x.2024090065
    [2]GUO Minggong, TAO Yunqi, ZHANG Jianzhao. Study on determination of development height of mining-induced fissure zone in deep outburst coal seam[J]. Journal of Mine Automation, 2022, 48(8): 62-68, 91. DOI: 10.13272/j.issn.1671-251x.2022030039
    [3]LIU Yikang, NIU Huiyong, NIE Qimiao, LU Yi, LI Shilin. Study on the distribution of O2 concentration field of coal spontaneous combustion in high ground temperature goaf[J]. Journal of Mine Automation, 2021, 47(8): 108-114. DOI: 10.13272/j.issn.1671-251x.2020120021
    [4]LIU Ming, CAO Minyuan, WU Yuhai, LI Bo. Research on deformation control of roadway in reverse fault fracture zone of Tunbao Coal Mine[J]. Journal of Mine Automation, 2020, 46(4): 98-103. DOI: 10.13272/j.issn.1671-251x.17532
    [5]HAO Yu, YE Zhengliang. Research on index gas and activation energy of coal spontaneous combustion under different methane atmosphere[J]. Journal of Mine Automation, 2019, 45(11): 65-69. DOI: 10.13272/j.issn.1671-251x.2019040104
    [6]QU Shijia, AN Shigang, WU Fusheng, LI Peng. Research on spontaneous combustion "three zones" in goaf of fully mechanized working face with large mining height[J]. Journal of Mine Automation, 2019, 45(5): 22-25. DOI: 10.13272/j.issn.1671-251x.17403
    [7]SHI Xiaonan, JIN Qifeng, SHEN Xia. A 3D modeling method of bending zone in overburden strata[J]. Journal of Mine Automation, 2018, 44(3): 102-105. DOI: 10.13272/j.issn.1671-251x.2017070023
    [8]ZHANG Hui, ZHU Shuyun, LI Xiuhan, LI Tao, MENG Fanzhen. Research of height of water flowing fractured zone of overburden strata in fully-mechanized top-coal caving[J]. Journal of Mine Automation, 2015, 41(1): 10-14. DOI: 10.13272/j.issn.1671-251x.2015.01.003
    [9]CHENG Wen-dong, MAI Qiao-li, WU Xue-song. Research of properties of spontaneous combustion "three zones" in goaf based on fuzzy clustering analysis[J]. Journal of Mine Automation, 2013, 39(2): 39-42.
    [10]SHANG Dan, GAO Yong-qing. Design and Simulation of Temperature Controller for Calcining Zone of Rotary Kil[J]. Journal of Mine Automation, 2009, 35(1): 30-32.
  • Cited by

    Periodical cited type(13)

    1. 刘刚,弓疆. 国兴煤矿9煤层工作面立体空间自然发火标志气体及其分级指标值研究. 当代化工研究. 2025(01): 73-76 .
    2. 张诺,江成玉,张毅,覃晓波. 贵州某矿采空区标志性气体优选及自燃“三带”划分. 煤. 2024(05): 23-27+31 .
    3. 蒋恒. 煤自燃多参数气体主辅预测指标体系研究. 中国矿业. 2023(04): 147-153 .
    4. 王磊,吴兵,李超. 基于乌东煤矿采空区“三带”气体特征的煤自燃早期预警研究. 能源科技. 2023(02): 23-27 .
    5. 张仲清. 埋管抽采位置及负压变化对采空区煤自燃危险区域的影响. 工矿自动化. 2023(10): 96-103 . 本站查看
    6. 武泽伟,吴康,李洋,梁然,左学海. 东古城煤矿最短自然发火期及采空区“三带”划分的研究. 煤. 2023(12): 6-10 .
    7. 王毅,周余,罗广,张定山,陈占全. 龙滩煤矿K1煤层自燃标志气体及其临界值研究. 矿业安全与环保. 2023(06): 98-103 .
    8. 汪瑞,石必明. 朱集西煤矿指标气体确定及自燃“三带”划分研究. 煤炭技术. 2022(09): 99-102 .
    9. 张勋,曾斌,张雅军,赵梦繁,邹嘉晖. 基于调压通风的复合采空区自燃与瓦斯协同防治模拟研究. 煤炭技术. 2022(11): 94-98 .
    10. 赵宇新. 斜沟煤矿13号煤层自燃特性与标志性气体试验研究. 煤. 2021(07): 6-8+87 .
    11. 赵文彬,张文明,刘辉,石新岩,王忠密,李振武. 综采放顶煤不同阶段采空区立体自燃带分布规律研究. 矿业研究与开发. 2021(11): 44-51 .
    12. 赵文彬,赵娟,李振武,王胜利,李勇,芦继宇. 厚煤层窄工作面采空区立体自燃带分布规律研究. 煤炭科学技术. 2020(12): 123-130 .
    13. 朱玉,秦汝祥,邬灿春. 平顶山十矿煤层标志气体生成量分布规律研究. 工矿自动化. 2019(05): 16-21 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (83) PDF downloads (10) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return