Citation: | TAN Zhen, CUI Xiang, GAO Yongjun, et al. Trajectory tracking control of trackless rubber-tired vehicles in underground mines under multi-sensor time delays[J]. Journal of Mine Automation,2025,51(4):120-130. DOI: 10.13272/j.issn.1671-251x.2025030045 |
The underground mine unmanned driving system typically uses SLAM algorithms based on vision and Light Detection and Ranging (LiDAR) sensors for scene reconstruction and vehicle positioning. However, in underground environments, the dust density is high, and lighting conditions are poor, making complex perception-based positioning algorithms prone to significant computational delays. Additionally, most underground vehicles use modified solutions, which inevitably introduce actuator delays. These factors can have a cumulative effect, making it necessary to study trajectory tracking control for underground mine trackless rubber-tired vehicles under multi-sensor delays. A lateral control dynamics model for the vehicle was developed, and two modeling methods were proposed to analyze the impact of delays on the stability of vehicle dynamics control: one was the state augmented modeling method, and the other was the Lyapunov functional-based method. The CarSim and Simulink platforms were used to construct a simulation testing environment for underground vehicle trajectory tracking control. Simulation results indicated that when focusing on the average tracking distance error relative to the reference trajectory, it was necessary to limit the delay of the perception algorithm and the standard deviation of positioning. When there was a maximum tracking distance error constraint related to safety, the delay requirements of the perception algorithm should be prioritized.
[1] |
PAN Jian,XU Qing,LI Keqiang,et al. A vehicle cloud control system considering communication quantization and stochastic delay[J]. Asian Journal of Control,2023,25(5):3616-3631. DOI: 10.1002/asjc.3045
|
[2] |
崔邵云,鲍久圣,李芳威,等. 基于多源里程融合的井下无人驾驶自主导航SLAM方法 [J/OL]. 煤炭科学技术:1-10 [2025-01-18]. http://kns.cnki.net/kcms/detail/11.2402.td.20240925.1231.002.html.
CUI Shaoyun,BAO Jiusheng,LI Fangwei,et al. Multi-source odometry fusion-based underground unmanned autonomous navigation SLAM method[J/OL]. Coal Science and Technology:1-10[2025-01-18]. http://kns.cnki.net/kcms/detail/11.2402.td.20240925.1231.002.html.
|
[3] |
HAO Mingrui,YUAN Xiaoming,REN Jie,et al. Research on downhole MTATBOT positioning and autonomous driving strategies based on odometer-assisted inertial measurement[J]. Sensors,2024,24(24). DOI: 10.3390/s24247935.
|
[4] |
左洋,李伟宏. UWB精准定位技术在电机车无人驾驶系统中的应用[J]. 工矿自动化,2023,49(增刊1):47-49.
ZUO Yang,LI Weihong. Application of UWB precision positioning technology in motor truck unmanned system[J]. Journal of Mine Automation,2023,49(S1):47-49.
|
[5] |
CUI Yuming,LIU Songyong,YAO Jian,et al. Integrated positioning system of unmanned automatic vehicle in coal mines[J]. IEEE Transactions on Instrumentation and Measurement,2021,70:1-13.
|
[6] |
YUAN Xiaoming,BI Yueqi,HAO Mingrui,et al. Research on location estimation for coal tunnel vehicle based on ultra-wide band equipment[J]. Energies,2022,15(22). DOI: 10.3390/en15228524 .
|
[7] |
林燕霞,苏丹. 基于SLAM技术的矿区巷道巡检机器人路径规划优化[J]. 金属矿山,2024(4):209-214.
LIN Yanxia,SU Dan. Path planning optimization of mine roadway inspection robot based on SLAM technique[J]. Metal Mine,2024(4):209-214.
|
[8] |
李芳威,鲍久圣,王陈,等. 基于LD改进Cartographer建图算法的无人驾驶无轨胶轮车井下SLAM自主导航方法及试验[J]. 煤炭学报,2024,49(增刊2):1271-1284.
LI Fangwei,BAO Jiusheng,WANG Chen,et al. Underground SLAM autonomous navigation method and experiment of unmanned trackless haulage vehicles based on LD-improved Cartographer mapping algorithm[J]. Journal of China Coal Society,2024,49(S2):1271-1284.
|
[9] |
INOSTROZA F,PARRA-TSUNEKAWA I,RUIZ-DEL-SOLAR J. Robust localization for underground mining vehicles:an application in a room and pillar mine[J]. Sensors,2023,23(19). DOI: 10.3390/s23198059.
|
[10] |
崔邵云,鲍久圣,胡德平,等. SLAM技术及其在矿山无人驾驶领域的研究现状与发展趋势[J]. 工矿自动化,2024,50(10):38-52.
CUI Shaoyun,BAO Jiusheng,HU Deping,et al. Research status and development trends of SLAM technology in autonomous mining field[J]. Journal of Mine Automation,2024,50(10):38-52.
|
[11] |
郭爱军,张奕,朱云涛. 基于LQR控制和姿态预测的井下无人矿车路径跟踪研究[J]. 煤炭工程,2023,55(增刊1):176-181.
GUO Aijun,ZHANG Yi,ZHU Yuntao. Path tracking research of underground unmanned mine vehicles based on LQR control and posture prediction[J]. Coal Engineering,2023,55(S1):176-181.
|
[12] |
王陈,鲍久圣,袁晓明,等. 无轨胶轮车井下无人驾驶系统设计及控制策略研究[J]. 煤炭学报,2021,46(增刊1):520-528.
WANG Chen,BAO Jiusheng,YUAN Xiaoming,et al. Design and control strategy of underground driverless system for trackless rubber tire vehicle[J]. Journal of China Coal Society,2021,46(S1):520-528.
|
[13] |
LIU Ya,PENG Ping′an,WANG Liguan,et al. PSO-NMPC control strategy based path tracking control of mining LHD (scraper)[J]. Scientific Reports,2024,14(1). DOI: 10.1038/s41598-024-79248-8.
|
[14] |
宋秦中,胡华亮. 基于CNN算法的井下无人驾驶无轨胶轮车避障方法[J]. 金属矿山,2023(10):168-174.
SONG Qinzhong,HU Hualiang. Obstacle avoidance method for underground unmanned trackless rubber-tyred vehicle based on CNN algorithm[J]. Metal Mine,2023(10):168-174.
|
[15] |
MENG Qinghua,QIAN Chunjiang,SUN Zongyao,et al. Autonomous parking method based on improved A* algorithm and model predictive control[J]. Nonlinear Dynamics,2025,113(7):6839-6862. DOI: 10.1007/s11071-024-10456-7
|
[16] |
韩江洪,卫星,陆阳,等. 煤矿井下机车无人驾驶系统关键技术[J]. 煤炭学报,2020,45(6):2104-2115.
HAN Jianghong,WEI Xing,LU Yang,et al. Driverless technology of underground locomotive in coal mine[J]. Journal of China Coal Society,2020,45(6):2104-2115.
|
[17] |
王凯,鲍久圣,吕玉寒,等. 基于ESKF与改进IMM算法的煤矿无人驾驶车辆井上−井下无缝定位[J/OL]. 煤炭学报:1-16 [2025-01-18]. https://doi.org/10.13225/j.cnki. jccs.2024.0676.
WANG Kai,BAO Jiusheng,LYU Yuhan,et al. Seamless positioning of unmanned vehicles in coal mines above and below ground based on ESKF and improved IMM algorithm[J/OL]. Journal of China Coal Society:1-16 [2025-01-18]. https://doi.org/10.13225/j.cnki. jccs.2024.0676.
|
[18] |
CUI Yuming,PU Jiajun,HU Ningning,et al. Autonomous positioning for mobile vehicles based on visual-inertial fusion in challenging dark roadway scenes[J]. Journal of Field Robotics,2024. DOI: 10.1002/rob.22454.
|
[19] |
PAN Jian,XU Qing,LI Keqiang,et al. Cloud control of connected vehicle under bidirectional time-varying delay:an application of predictor-observer structured controller[J]. IEEE Transactions on Industrial Electronics,2024,71(10):13113-13123. DOI: 10.1109/TIE.2024.3355494
|
[20] |
LI Fanbiao,WU Zheng,PAL N R,et al. Lane-keeping control of automatic steering systems via adaptive fuzzy sliding-mode approach[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2024,54(3):1683-1693.
|
[21] |
GONZÁLEZ A,GARCÍA P. Output-feedback anti-disturbance predictor- based control for discrete-time systems with time-varying input delays[J]. Automatica,2021,129. DOI:10.1016/j.automatica.2021. 109627.
|
[22] |
WANG Kan,MING Yang,ZHAO Huanjuan,et al. Effect of shock-flame interactions on initial damage characteristics in highway tunnel under hazmat tanker truck accident[J]. Tunnelling and Underground Space Technology,2022,130. DOI: 10.1016/j.tust.2022.104763.
|
[23] |
CERNA G E P,HERNÁNDEZ J R C,HERAZO J C M,et al. Evaluation of the overall effectiveness (OEE) of autonomous transportation system (AHS) equipment and its impact on mine design. Open pit mine case study[J]. Procedia Computer Science,2023,224:468-473. DOI: 10.1016/j.procs.2023.09.066
|
1. |
王国新,祝建东,汝洪芳. 基于改进YOLOv8s的矸石流目标检测方法. 矿业研究与开发. 2025(04): 229-237 .
![]() | |
2. |
程刚,陈杰,潘泽烨,魏溢凡,陈森森. 基于水传热和红外热成像的煤矸识别方法. 工矿自动化. 2024(01): 66-71+137 .
![]() | |
3. |
柳圆,司垒,王忠宾,魏东,顾进恒. 基于电磁波的煤岩识别技术研究进展. 工矿自动化. 2024(01): 42-48+65 .
![]() | |
4. |
郭栋梁,张延军. 基于轻量化PAM-M-YOLO模型的煤矸石图像检测. 矿业研究与开发. 2024(05): 220-227 .
![]() | |
5. |
利健,潘春荣,熊文清. 基于视觉定位的磁铁矿分选方案设计. 矿业研究与开发. 2024(08): 248-254 .
![]() | |
6. |
黄可,樊玉萍,董宪姝,马晓敏. 基于优化的VGG-16网络模型的煤矸识别研究. 矿业研究与开发. 2024(09): 219-226 .
![]() | |
7. |
黄永进,何剑锋,李卫东,夏菲,王杉,汪雪元,钟国韵,瞿金辉. 基于改进Swin-Transformer模型的铜矿X射线图像分类研究. 有色金属(选矿部分). 2024(12): 112-118+138 .
![]() | |
8. |
涂灿. VCS智能干选机的试验研究. 煤炭加工与综合利用. 2023(06): 37-41 .
![]() | |
9. |
冯来宏,李克相,顾雷雨,张西斌,高利晶,谭家贵,朱凌涛. 我国井下智能干选技术装备发展及展望. 煤炭工程. 2023(09): 11-15 .
![]() | |
10. |
曹现刚,刘思颖,王鹏,许罡,吴旭东. 面向煤矸分拣机器人的煤矸识别定位系统研究. 煤炭科学技术. 2022(01): 237-246 .
![]() | |
11. |
李亚坤,马宏伟,王鹏. 基于VGG_16网络的煤和矸石识别技术研究. 煤炭技术. 2022(09): 156-159 .
![]() | |
12. |
张烨,马宏伟,王鹏,曹现刚,魏小荣,周文剑. 煤矸石智能分拣机器人研究进展与关键技术. 工矿自动化. 2022(12): 42-48+56 .
![]() | |
13. |
司垒,谭超,朱嘉皓,王忠宾,李嘉豪. 基于X射线图像和激光点云的煤矸识别方法. 仪器仪表学报. 2022(09): 193-205 .
![]() | |
14. |
曹珍贯,吕旻姝,张宗唐. 基于热成像技术和深度学习的煤矸石识别方法. 湖南工程学院学报(自然科学版). 2021(01): 48-52 .
![]() | |
15. |
范振,陈乃建,黄玉林,张来伟,李映君. 基于支持向量机与多种特征的煤矸石识别. 济南大学学报(自然科学版). 2021(03): 277-284 .
![]() | |
16. |
张泽琳,章智伟,胡齐,王黎. 基于深度学习的多产品煤料图像分类方法研究. 煤炭科学技术. 2021(09): 117-123 .
![]() | |
17. |
曹现刚,李莹,王鹏,吴旭东. 煤矸石识别方法研究现状与展望. 工矿自动化. 2020(01): 38-43 .
![]() | |
18. |
师平,白亚琼,陈亮,申峰. 新型一体化智能干法选煤系统设计与应用. 机械与电子. 2020(07): 36-39+45 .
![]() | |
19. |
袁雄兵. 一种基于X射线的铜矿与脉石分离系统. 有色金属设计. 2020(02): 55-58 .
![]() | |
20. |
郑钊. 文化创意产业群视觉识别系统设计. 现代电子技术. 2020(17): 158-161 .
![]() | |
21. |
林丽凤,靳远志,赵天波,王晓倩. TDS智能选矸系统在滨湖煤矿井下的应用. 选煤技术. 2020(06): 49-52 .
![]() | |
22. |
郭永存,于中山,卢熠昌. 基于PSO优化NP-FSVM的煤矸光电智能分选技术研究. 煤炭科学技术. 2019(04): 13-19 .
![]() | |
23. |
孙照焱,蒋康生,尹华功,郭劲. XNDT-104智能分选系统在闪星锑业的应用. 有色金属设计. 2019(03): 128-131 .
![]() | |
24. |
杨慧刚,乔志敏,高绘彦,刘宇,赵一丁. 煤与矸石分选系统设计. 工矿自动化. 2018(08): 91-95 .
![]() | |
25. |
潘越,曾哲,张恩瑜. 基于MATLAB和图像灰度值对X射线探测煤矸识别的研究. 煤炭技术. 2017(11): 307-309 .
![]() | |
26. |
葛学海,白云飞,陈鹏,张立功. 煤与矸石分离系统中X射线探测器的设计. 选煤技术. 2017(06): 64-67 .
![]() |