DOU Zhiheng, WANG Ranfeng, QIN Xinkai, et al. Research on intelligent control of coal slime flotation based on the WOA-GRU model[J]. Journal of Mine Automation,2025,51(4):153-159, 168. DOI: 10.13272/j.issn.1671-251x.2025030014
Citation: DOU Zhiheng, WANG Ranfeng, QIN Xinkai, et al. Research on intelligent control of coal slime flotation based on the WOA-GRU model[J]. Journal of Mine Automation,2025,51(4):153-159, 168. DOI: 10.13272/j.issn.1671-251x.2025030014

Research on intelligent control of coal slime flotation based on the WOA-GRU model

More Information
  • Received Date: March 03, 2025
  • Revised Date: April 08, 2025
  • Available Online: April 08, 2025
  • Due to the complexity of the flotation process mechanism, which makes it difficult to meet the requirements of advanced process control, a system identification modeling method was adopted. To address the low fitting accuracy of traditional identification methods, a Whale Optimization Algorithm (WOA)-based Gated Recurrent Unit (GRU) system identification model (WOA-GRU) was proposed. This model leveraged the GRU's capability to effectively handle the time-delay characteristics inherent in the flotation process, while the WOA was used to optimize network parameters, further improving the identification accuracy. Considering that most existing coal preparation plants use single-input single-output PID controllers, which struggle to manage multi-input multi-output systems, Model Predictive Control (MPC) was introduced to better handle the multivariable coupling in the flotation process. Using production data from the Daichi Dam coal preparation plant, MPC simulations were conducted using both the WOA-GRU and NARX identification models. The results showed that the WOA-GRU model achieved 51.84% higher fitting accuracy than the NARX model. After integrating MPC, the WOA-GRU model could maintain ash content fluctuations within ±4% of the setpoint, outperforming the NARX model. Field trial results indicated that the proportion of data with ash fluctuation between 5% and 10% decreased by 10.8%, and the proportion exceeding 10% decreased by 3.9% compared to before MPC implementation. These results demonstrate that the WOA-GRU model not only offers higher accuracy and stability but also reduces ash content fluctuations, providing a reference for intelligent control and practical application in coal slime flotation.

  • [1]
    国家能源局. 煤矿智能化标准体系建设指南[EB/OL]. (2024-04-03)[2025-03-01]. https://www.xifeng.gov.cn/zwgk/zdlygk/xcyxdn/202404/t20240403_84145937.html.

    National Energy Administration. Guide for building the intelligent standard system of coal mine[EB/OL]. (2024-04-03)[2025-03-01]. https://www.xifeng.gov.cn/zwgk/zdlygk/xcyxdn/202404/t20240403_84145937.html.
    [2]
    王然风,高建川,付翔. 智能化选煤厂架构及关键技术[J]. 工矿自动化,2019,45(7):28-32.

    WANG Ranfeng,GAO Jianchuan,FU Xiang. Framework and key technologies of intelligent coal preparation plant[J]. Industry and Mine Automation,2019,45(7):28-32.
    [3]
    陶有俊,路迈西,蔡璋,等. 煤泥浮选动力学模型的研究[J]. 选煤技术,1994(3):22-26.

    TAO Youjun,LU Maixi,CAI Zhang,et al. Research on the dynamic model of coal slime flotation[J]. Coal Preparation Technology,1994(3):22-26.
    [4]
    QUINTANILLA P,NEETHLING S J,BRITO-PARADA P R. Modelling for froth flotation control:a review[J]. Minerals Engineering,2021,162. DOI: 10.1016/j.mineng.2020.106718.
    [5]
    褚菲,王佩,朱安强,等. 面向过程控制的煤泥浮选机理建模与仿真研究[J]. 控制工程,2024,31(12):2129-2139,2166.

    CHU Fei,WANG Pei,ZHU Anqiang,et al. Modeling and simulation of coal slurry flotation mechanism for process control[J]. Control Engineering of China,2024,31(12):2129-2139,2166.
    [6]
    刘兆田,李敬敬,何旭,等. Matlab系统辨识工具箱在煤泥浮选过程辨识建模中的应用[J]. 选煤技术,2014(6):77-80.

    LIU Zhaotian,LI Jingjing,HE Xu,et al. Application of Matlab system identification toolbox to identification and modeling of the coal flotation process[J]. Coal Preparation Technology,2014(6):77-80.
    [7]
    范富博. 浮选加药系统智能控制研究与应用[D]. 太原:太原理工大学,2022.

    FAN Fubo. Research and application of intelligent control of flotation dosing system[D]. Taiyuan:Taiyuan University of Technology,2022.
    [8]
    姜岩,王雪刚,侯先瑞,等. 深度循环神经网络在船舶操纵运动辨识中的对比研究[J]. 水动力学研究与进展A辑,2023,38(2):187-194.

    JIANG Yan,WANG Xuegang,HOU Xianrui,et al. Comparative study of deep recurrent neural network in ship maneuvering motion recognition[J]. Chinese Journal of Hydrodynamics,2023,38(2):187-194.
    [9]
    许中华. 基于改进鲸鱼优化算法的非线性系统辨识研究[D]. 北京:北京化工大学,2021.

    XU Zhonghua. Research on nonlinear system identification based on improved whale optimization algorithm[D]. Beijing:Beijing University of Chemical Technology,2021.
    [10]
    李强,范凌霄,刘利敏,等. 基于多数据融合控制器的浮选过程控制应用研究[J]. 中国矿业,2023,32(增刊1):177-181. DOI: 10.12075/j.issn.1004-4051.20230421

    LI Qiang,FAN Lingxiao,LIU Limin,et al. Research on the application of floatation process control based on multiple data fusion controllers[J]. China Mining Journal,2023,32(S1):177-181. DOI: 10.12075/j.issn.1004-4051.20230421
    [11]
    HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. DOI: 10.1162/neco.1997.9.8.1735
    [12]
    CHO K,VAN MERRIENBOER B,GULCEHRE C,et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. Computer Science,2014. DOI: 10.3115/v1/D14-1179.
    [13]
    赵家城,孙坚,徐红伟. 基于改进鲸鱼算法的锂电池模型参数辨识[J/OL]. 电源学报:1-14[2025-03-01]. http://kns.cnki.net/kcms/detail/12.1420.TM.20230517.1045.004.html.

    ZHAO Jiacheng,SUN Jian,XU Hongwei. Parameter identification of lithium battery model based on improved whale algorithm[J/OL]. Journal of Power Supply:1-14[2025-03-01]. http://kns.cnki.net/kcms/detail/12.1420.TM.20230517.1045.004.html.
    [14]
    MIRJALILI S,LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software,2016,95:51-67. DOI: 10.1016/j.advengsoft.2016.01.008
    [15]
    MOHAMMED H M,UMAR S U,RASHID T A. A systematic and meta-analysis survey of whale optimization algorithm[J]. Computational Intelligence and Neuroscience,2019. DOI: 10.1155/2019/8718571.
    [16]
    张翼飞,皮子扬,朱瑞琪,等. 基于WOA−BiLSTM神经网络的风力发电预测[J]. 电工技术,2022(10):28-31.

    ZHANG Yifei,PI Ziyang,ZHU Ruiqi,et al. Wind power prediction based on WOA-BiLSTM neural network[J]. Electric Engineering,2022(10):28-31.
    [17]
    李祚敏,秦江涛. 基于WOA−GRU的销售预测研究[J]. 软件导刊,2020,19(9):17-20.

    LI Zuomin,QIN Jiangtao. Research on sales forecasting based on WOA-GRU[J]. Software Guide,2020,19(9):17-20.
    [18]
    寇敏,张萌萌,赵军学,等. 融合天气特征的WOA−GRU高速公路短时交通流预测[J]. 公路,2024,69(4):193-199.

    KOU Min,ZHANG Mengmeng,ZHAO Junxue,et al. Prediction of short-term traffic flow of WOA-GRU expressway based on weather characteristics[J]. Highway,2024,69(4):193-199.
    [19]
    王珺,王然风,魏凯,等. 基于时间序列对齐和TCNformer的重介精煤灰分多步预测[J]. 工矿自动化,2024,50(5):60-66.

    WANG Jun,WANG Ranfeng,WEI Kai,et al. Multi-step prediction of heavy medium refined coal ash based on time series alignment and TCNformer[J]. Journal of Mine Automation,2024,50(5):60-66.
    [20]
    宋春生,熊学春,陈泊远,等. 一种基于NARX神经网络的振动主动控制方法[J]. 噪声与振动控制,2024,44(2):1-7,260.

    SONG Chunsheng,XIONG Xuechun,CHEN Boyuan,et al. An active vibration control method based on NARX neural network[J]. Noise and Vibration Control,2024,44(2):1-7,260.
    [21]
    余嘉莉,陈永忠,韩利峰. 基于Qt的TMSR熔盐泵试验台架控制系统[J]. 核技术,2022,45(6):87-94.

    YU Jiali,CHEN Yongzhong,HAN Lifeng. The control system for TMSR molten salt pump experimental platform based on Qt[J]. Nuclear Techniques,2022,45(6):87-94.
    [22]
    陈云霞,黄雷阳. 基于PCI1710和Qt的电子束焊机数据采集系统[J]. 仪表技术与传感器,2025(1):73-78. DOI: 10.3969/j.issn.1002-1841.2025.01.013

    CHEN Yunxia,HUANG Leiyang. Data acquisition system of electron beam welder based on PCI1710 and Qt[J]. Instrument Technique and Sensor,2025(1):73-78. DOI: 10.3969/j.issn.1002-1841.2025.01.013
    [23]
    贾世海, 李沛玉, 胡守扬, 等. 基于Qt框架的APV25数据采集系统研究[J]. 原子能科学技术,2020,54(6):1041-1046.

    JIA Shihai, LI Peiyu, HU Shouyang, et al. Research of APV25 Data acquisition system based on Qt framework[J]. Atomic Energy Science and Technology,2020,54(6):1041-1046.
    [24]
    任安虎, 李珊. 集成Vissim-Python和Qt的信控交叉口DRL配时仿真系统设计[J]. 计算机应用与软件,2024,41(11):53-59,122.

    REN Anhu, LI Shan. Design of DRL timing limulation system for signal intersection integrating Vissim-Python and Qt[J]. Computer Applications and Software,2024,41(11):53-59,122.
  • Related Articles

    [1]QIN Xinkai, WANG Ranfeng, FU Xiang, DOU Zhiheng, LI Pinyu. Research on intelligent control of coal slime flotation based on model-free deep reinforcement learning[J]. Journal of Mine Automation, 2025, 51(8): 25-33, 58. DOI: 10.13272/j.issn.1671-251x.2025040094
    [2]CHENG Rongjie, CUI Teng. Intelligent prediction of clean coal ash content based on multi-source heterogeneous information fusion[J]. Journal of Mine Automation, 2025, 51(7): 142-148. DOI: 10.13272/j.issn.1671-251x.2025060044
    [3]WANG Jun, WANG Ranfeng, WEI Kai, HAN Jie, ZHANG Qian. Multi step prediction of dense medium clean coal ash content based on time series alignment and TCNformer[J]. Journal of Mine Automation, 2024, 50(5): 60-66. DOI: 10.13272/j.issn.1671-251x.2023090007
    [4]HAN Yu, WANG Lanhao, LIU Qinshan, GUI Xiahui. Intelligent detection model of flotation tailings ash based on CNN-BP[J]. Journal of Mine Automation, 2023, 49(3): 100-106. DOI: 10.13272/j.issn.1671-251x.2022100019
    [5]GUO Zhongtian, WANG Ranfeng, FU Xiang, WEI Kai, WANG Yulong. Method for extracting froth velocity of coal slime flotation based on image feature matching[J]. Journal of Mine Automation, 2022, 48(10): 34-39, 54. DOI: 10.13272/j.issn.1671-251x.17991
    [6]CAO Wenyan, WANG Ranfeng, FAN Minqiang, FU Xiang, WANG Yulong. Coal slime flotation foam image classification method based on semi-supervised clustering[J]. Journal of Mine Automation, 2019, 45(7): 38-42. DOI: 10.13272/j.issn.1671-251x.17437
    [7]CHEN Peng, WANG Chengyong, SHI Kaiyi, JI Yonghua, SUO Peidie, LIU Yuanli. Experimental research on coal slime flotation process based on orthogonal test desig[J]. Journal of Mine Automation, 2019, 45(2): 91-95. DOI: 10.13272/j.issn.1671-251x.2018050097
    [8]WANG Wen-qing. Research of key technologies for explosion-proof coal ash content analyzer[J]. Journal of Mine Automation, 2013, 39(1): 43-47.
    [9]ZHAO Kai, LEI Meng, . Optimization Method of Coal Sample in Ash Prediction Model Based on Near Infrared Spectroscopy[J]. Journal of Mine Automation, 2012, 38(9): 39-42.
    [10]ZHAO Kai, LEI Meng. Optimization Method of Coal Sample in Ash Prediction Model Based on Near Infrared Spectroscopy[J]. Journal of Mine Automation, 2012, 38(9): 35-38.

Catalog

    LIU Shutong

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (57) PDF downloads (13) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return