Citation: | LIU Jing, WEI Zhiqiang, CAI Chunmeng, et al. Positioning method for roadheaders based on fusion of LiDAR and inertial navigation[J]. Journal of Mine Automation,2025,51(3):78-85, 95. DOI: 10.13272/j.issn.1671-251x.2025010021 |
Accurate positioning of roadheaders in coal mines is fundamental to intelligent tunneling. However, harsh working conditions, such as low illumination and high dust levels in underground mines, often degrade the accuracy and stability of single-source positioning methods. To improve the positioning accuracy of the roadheaders in these harsh conditions, a new positioning method based on the fusion of LiDAR and inertial navigation using error state kalman filter (ESKF) was developed. First, the center of the spherical target suspended from the tunnel roof was defined as the origin of the tunnel coordinate system. A density-based spatial clustering of applications with noise (DBSCAN) and a shape-feature-based spherical target point cloud extraction algorithm were designed to address the problem that conventional methods relying on reflection intensity for distinguishing spherical targets fail in environments with dust accumulation. The coordinate transformation method is then used to build a radar position measurement system to obtain a reference for the fusion positioning. Next, position and attitude information of the roadheader were obtained through inertial navigation integration. Subsequently, an error-state model was formulated based on a first-order Gaussian-Markov process, and the ESKF algorithm was applied to fuse the outputs of LiDAR and the inertial navigation, providing the fusion positioning results of the roadheader within the tunnel. The fusion positioning results were then fed back into the inertial navigation to correct accumulated errors, achieving precise positioning. Experimental results demonstrated that, under static conditions, the position error of the LiDAR-based positioning system remained below 10 cm across different positions and attitude angles, and the inertial navigation system exhibited a position error of less than 70 cm. In dynamic conditions, the fusion positioning system achieved a position error of 5.8 cm, reducing the LiDAR system's error by 12.1%. The proposed LiDAR and inertial navigation fusion-based roadheader positioning method meets the positioning requirements for automated cutting operations of roadheaders in complex tunneling conditions.
[1] |
谢和平,王金华,鞠杨,等. 煤炭革命的战略与方向[M]. 北京:科学出版社,2018.
XIE Heping,WANG Jinhua,JU Yang,et al. Coal industry reform:strategies and directions[M]. Beijing:Science Press,2018.
|
[2] |
SHEN Yang,WANG Pengjiang,ZHENG Weixiong,et al. Error compensation of strapdown inertial navigation system for the boom-type roadheader under complex vibration[J]. Axioms,2021,10(3) . DOI: 10.3390/axioms10030224.
|
[3] |
马宏伟,王鹏,张旭辉,等. 煤矿巷道智能掘进机器人系统关键技术研究[J]. 西安科技大学学报,2020,40(5):751-759.
MA Hongwei,WANG Peng,ZHANG Xuhui,et al. Research on key technology of intelligent tunneling robotic system in coal mine[J]. Journal of Xi'an University of Science and Technology,2020,40(5):751-759.
|
[4] |
马宏伟,毛金根,毛清华,等. 基于惯导/全站仪组合的掘进机自主定位定向方法[J]. 煤炭科学技术,2022,50(8):189-195.
MA Hongwei,MAO Jingen,MAO Qinghua,et al. Automatic positioning and orientation method of roadheader based on combination of ins and digital total station[J]. Coal Science and Technology,2022,50(8):189-195.
|
[5] |
张旭辉,刘博兴,张超,等. 掘进机全站仪与捷联惯导组合定位方法[J]. 工矿自动化,2020,46(9):1-7.
ZHANG Xuhui,LIU Boxing,ZHANG Chao,et al. Roadheader positioning method combining total station and strapdown inertial navigation system[J]. Industry and Mine Automation,2020,46(9):1-7.
|
[6] |
史苏阳. 煤矿复杂环境移动目标精确定位技术研究[D]. 徐州:中国矿业大学,2023.
SHI Suyang. Research on accurate positioning technology of moving target in complex environment of coal mine[D]. Xuzhou:China University of Mining and Technology,2023.
|
[7] |
LYU Hongbo,ZHENG Xinyue,QI Yuhao,et al. UWB-IMU pose estimation for roadheader based on machine learning[C]. International Conference on Intelligent Control,Measurement and Signal Processing,Chengdu,2023:1153-1156.
|
[8] |
毛清华,周庆,安炎基,等. 惯导与视觉信息融合的掘进机精确定位方法[J]. 煤炭科学技术,2024,52(5):236-248. DOI: 10.12438/cst.2023-1003
MAO Qinghua,ZHOU Qing,AN Yanji,et al. Precise positioning method of tunneling machine for inertial navigation and visual information fusion[J]. Coal Science and Technology,2024,52(5):236-248. DOI: 10.12438/cst.2023-1003
|
[9] |
WAN Jicheng,ZHANG Xuhui,ZHANG Chao,et al. Vision and inertial navigation combined-based pose measurement method of cantilever roadheader[J]. Sustainability,2023,15(5). DOI: 10.3390/SU15054018.
|
[10] |
孙凌飞,刘亚,彭继国,等. 基于惯性技术的掘进机组合定位方法[J]. 煤炭科学技术,2024,52(12):300-310. DOI: 10.12438/cst.2023-1648
SUN Lingfei,LIU Ya,PENG Jiguo,et al. Integrated positioning method of roadheader based on inertial technology[J]. Coal Science and Technology,2024,52(12):300-310. DOI: 10.12438/cst.2023-1648
|
[11] |
刘亚超. 面向掘进机的三维激光同步定位与建图[D]. 北京:北方工业大学,2024.
LIU Yachao. Three-dimensional laser synchronous positioning and mapping for tunneling machines[D]. Beijing:North China University of Technology,2024.
|
[12] |
李朕阳,邹鹏,刘振海,等. 同平台双偏振仪器地理定位及校正方法[J]. 光子学报,2021,50(2):150-162.
LI Zhenyang,ZOU Peng,LIU Zhenhai,et al. Geolocation and correction method for dual polarization instrument on same platform[J]. Acta Photonica Sinica,2021,50(2):150-162.
|
[13] |
司垒,王忠宾,谭超,等. 基于差分式惯性传感组件的采煤机位姿解算法[J]. 振动. 测试与诊断,2021,41(2):220-227,406.
SI Lei,WANG Zhongbin,TAN Chao,et al. Position and attitude calculation algorithm of shearer based on differential inertial sensors[J]. Journal of Vibration,Measurement & Diagnosis,2021,41(2):220-227,406.
|
[14] |
石勇. 基于三维激光雷达的掘进机实时位姿纠偏系统[J]. 煤矿机械,2023,44(5):64-66.
SHI Yong. Real-time pose correction system of roadheader based on three-dimensional lidar[J]. Coal Mine Machinery,2023,44(5):64-66.
|
[15] |
QU Yuanyuan,YANG Teng,LI Tao,et al. Path tracking of underground mining boom roadheader combining BP neural network and state estimation[J]. Applied Sciences,2022,12(10). DOI: 10.3390/APP12105165.
|
[16] |
蔡春蒙,刘京,周江涛,等. 激光雷达的标定方法、系统和可读存储介质:CN202411239096.7[P]. 2024-11-29.
CAI Chunmeng,LIU Jing,ZHOU Jiangtao,et al. The calibration method,system,and readable storage medium of lidar:CN202411239096.7[P]. 2024-11-29.
|
[17] |
郭伦锋,郭一楠,蒋康庆,等. 掘进机姿态参数测量及解算方法[J]. 工矿自动化,2021,47(12):46-54.
GUO Lunfeng,GUO Yinan,JIANG Kangqing,et al. Measurement and calculation method of attitude parameters of roadheader[J]. Industry and Mine Automation,2021,47(12):46-54.
|
[18] |
HAHSLER M,PIEKENBROCK M,DORAN D. Dbscan:fast density-based clustering with R[J]. Journal of Statistical Software,2019,91. DOI: 10.18637/jss.v091.i01.
|
[19] |
SZABOVA M,DUCHON F. Survey of GNSS coordinates systems[J]. European Scientific Journal,2016,12(24):33-42.
|
[20] |
BRIGADNOV I,LUTONIN A,BOGDANOVA K. Error state extended Kalman filter localization for underground mining environments[J]. Symmetry,2023,15(2). DOI: 10.3390/SYM15020344.
|
[1] | LI Lei, XU Chunyu, SONG Jiancheng, TIAN Muqin, SONG Danyang, ZHANG Jie, HAO Zhenjie, MA Rui. Attitude monitoring method for hydraulic support in fully mechanized working face based on PSO-ELM[J]. Journal of Mine Automation, 2024, 50(8): 14-19. DOI: 10.13272/j.issn.1671-251x.2024070023 |
[2] | WANG Zhongle. Attitude monitoring and control technology of fully mechanized mining hydraulic support[J]. Journal of Mine Automation, 2022, 48(S2): 116-117,137. |
[3] | XU Chang, WANG Daoyuan, LI Jingzhao, CHEN Zihua. Intelligent safety monitoring and predictive maintenance system for mining equipment[J]. Journal of Mine Automation, 2021, 47(3): 79-82. DOI: 10.13272/j.issn.1671-251x.17688 |
[4] | WANG Yafei, WANG Xuewen, XIE Jiacheng, YANG Zhaojian. Memory attitude monitoring method for hydraulic support based on grey theory[J]. Journal of Mine Automation, 2017, 43(8): 11-14. DOI: 10.13272/j.issn.1671-251x.2017.08.003 |
[5] | ZHANG Pengpeng, YU Along, SUN Shiyu, XU Dongping. Application of multi-sensor data fusion in mine safety monitoring[J]. Journal of Mine Automation, 2015, 41(12): 5-8. DOI: 10.13272/j.issn.1671-251x.2015.12.002 |
[6] | LYU Yilei, HE Xiaogang. Design of safety monitoring system for coal mine roadway based on ZigBee technology[J]. Journal of Mine Automation, 2015, 41(4): 115-118. DOI: 10.13272/j.issn.1671-251x.2015.04.030 |
[7] | WANG Xiao-jian~, CAI Hai-bin~. Design of Safety Monitoring System for Shaft Construction of Coal Mine and Its Applicatio[J]. Journal of Mine Automation, 2010, 36(2): 14-16. |
[8] | LIAO Gao-hua, LIU De-hui. A New Type of Safety Monitoring System of Roof-bolt Roadway[J]. Journal of Mine Automation, 2008, 34(4): 4-7. |
[9] | LI Bing-cai, CHEN Ke, HUANG Zong-jie, JIN Qua. A New Structure of Integrated Information System of Monitoring System for Coal Mine Safety[J]. Journal of Mine Automation, 2005, 31(6): 40-41. |
[10] | LIU Zhi-han, YAO Meng. Implementation of Real-time Monitoring and Control Information System for Coal Mine Safety[J]. Journal of Mine Automation, 2005, 31(2): 4-6. |
1. |
常少锋. 煤矿井下人员的智能化平台设计. 能源与节能. 2025(03): 57-60 .
![]() | |
2. |
张雪军,黎卓芳. 煤矿多参数复合风险智能分级决策预警系统. 工矿自动化. 2024(S1): 88-91 .
![]() | |
3. |
董飞,李彦廷,慕灯聪,赵子含,丰耀辉,葛鲲鹏. 基于体域网的矿工生命体征监测与运动状态识别. 牡丹江师范学院学报(自然科学版). 2023(01): 12-18 .
![]() | |
4. |
宋兆雪,陈安明,赵青山. 煤矿井下人员智能化平台研究. 山东煤炭科技. 2021(02): 176-178+181 .
![]() | |
5. |
张立亚. 矿山救护保障系统设计. 工矿自动化. 2018(12): 19-23 .
![]() |