JIANG Sulong, GUO Pu, ZHAO Jiyun, et al. Design and experimental study of electro-hydraulic buffer control valve for hydraulic support push cylinder[J]. Journal of Mine Automation,2025,51(2):27-33. DOI: 10.13272/j.issn.1671-251x.2024120052
Citation: JIANG Sulong, GUO Pu, ZHAO Jiyun, et al. Design and experimental study of electro-hydraulic buffer control valve for hydraulic support push cylinder[J]. Journal of Mine Automation,2025,51(2):27-33. DOI: 10.13272/j.issn.1671-251x.2024120052

Design and experimental study of electro-hydraulic buffer control valve for hydraulic support push cylinder

More Information
  • Received Date: December 18, 2024
  • Revised Date: February 14, 2025
  • Available Online: February 27, 2025
  • During the pushing and pulling operations of the push cylinder of the hydraulic support in the working face, the instantaneous pressure surge at startup is severe, which can lead to cylinder bulging, expansion, seal failure, or even the fracture of connecting pins. To address this issue, the causes of pressure surges at the startup of the push cylinder are analyzed, and an electro-hydraulic buffer control valve is proposed to mitigate these surges. A theoretical analysis was conducted on key parameters such as valve opening, hydraulic resistance, and pressure-flow characteristics, and the key structural parameters of the electro-hydraulic buffer control valve were designed. A simulation model was developed in AMESim to verify its feasibility in buffering push pressure. Based on theoretical analysis and simulation results, a prototype of the electro-hydraulic buffer control valve was developed, and a simulation test platform was established to evaluate its performance by simulating push cylinder loads. The results showed that after using the electro-hydraulic buffer control valve, the pressure surge of the push cylinder was reduced from 17 MPa to 9.6 MPa, with a slight decrease in pushing speed. Field tests in an underground working face further confirmed the buffering effect of the electro-hydraulic buffer control valve on the push cylinder. The results showed that after installing the electro-hydraulic buffer control valve, the impact pressure of the push cylinder decreased from 22.3 MPa to 16.2 MPa, reducing the instantaneous pressure surge at startup by 27.3%. The findings verify that the electro-hydraulic buffer control valve can effectively reduce pressure surges during the pushing operations, providing a new solution for pressure buffering in push cylinders of hydraulic supports.

  • [1]
    国家发展改革委,国家能源局. 能源技术革命创新行动计划(2016—2030年)[EB/OL]. [2024-11-16]. https://www.gov.cn/xinwen/2016-06/01/5078628/files/d30fbe1ca23e45f3a8de7e6c563c9ec6.pdf.

    National Development and Reform Commission,National Energy Administration. Energy technology revolution and innovation action plan(2016-2030) [EB/OL]. [2024-11-16]. https://www.gov.cn/xinwen/ 2016-06/01/5078628/files/d30fbe1ca23e45f3a8de7e6c563c9ec6.pdf.
    [2]
    王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41.

    WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41.
    [3]
    魏文艳. 综采工作面智能化开采技术发展现状及展望[J]. 煤炭科学技术,2022,50(增刊2):244-253.

    WEI Wenyan. Development status and prospect of intelligent mining technology of longwall mining[J]. Coal Science and Technology,2022,50(S2):244-253.
    [4]
    王雪松,王世博,王世佳,等. 刮板输送机直线度误差预测模型[J]. 中国矿业大学学报,2023,52(1):168-177.

    WANG Xuesong,WANG Shibo,WANG Shijia,et al. Prediction model of straightness error of scraper conveyor[J]. Journal of China University of Mining & Technology,2023,52(1):168-177.
    [5]
    王云飞,赵继云,张鹤,等. 基于神经网络补偿的液压支架群推移系统直线度控制方法[J]. 煤炭科学技术,2024,52(11):174-185. DOI: 10.12438/cst.2024-0951

    WANG Yunfei,ZHAO Jiyun,ZHANG He,et al. Straightness control method of hydraulic support group pushing system based on neural network compensation[J]. Coal Science and Technology,2024,52(11):174-185. DOI: 10.12438/cst.2024-0951
    [6]
    杨润坤. 异常载荷影响下的综采工作面刮板输送机瞬态断链过程力学特性研究[D]. 阜新:辽宁工程技术大学,2021.

    YANG Runkun. Study on the mechanical characteristics of the transient chain-breaking process of the scraper conveyor in fully mechanized mining face under the influence of abnormal load[D]. Fuxin:Liaoning Technical University,2021.
    [7]
    马光明,王世博,葛世荣,等. 基于联立约束法的液压支架动力学建模[J]. 计算机仿真,2022,39(3):308-314. DOI: 10.3969/j.issn.1006-9348.2022.03.060

    MA Guangming,WANG Shibo,GE Shirong,et al. Dynamic modeling of powered support based on co-restriction method[J]. Computer Simulation,2022,39(3):308-314. DOI: 10.3969/j.issn.1006-9348.2022.03.060
    [8]
    李钰. 液压支架推移油缸定位控制分析[J]. 煤矿机电,2024,45(5):58-62.

    LI Yu. Positioning control analysis of hydraulic support push cylinder[J]. Colliery Mechanical & Electrical Technology,2024,45(5):58-62.
    [9]
    董庆震. 高压超大流量高水基卸荷阀的研究[D]. 兰州:兰州理工大学,2021.

    DONG Qingzhen. Research on high pressure,super large flow and high water-based unloading valve[D]. Lanzhou:Lanzhou University of Technology,2021.
    [10]
    张鹤,赵继云,王云飞,等. 双阀芯增量式高水基数字阀的设计及实验研究[J]. 工程科学与技术,2025,57(1):347-356.

    ZHANG He,ZHAO Jiyun,WANG Yunfei,et al. Design and experimental study of dual-spool incremental high-water-based digital valve[J]. Advanced Engineering Sciences,2025,57(1):347-356.
    [11]
    赵瑞豪. 高速开关阀先导控制的高水基比例方向阀特性分析及控制策略[D]. 太原:太原理工大学,2022.

    ZHAO Ruihao. Research on the characteristics and control strategy of the high water-based proportional directional valve with pilot control by the high-speed switching valve[D]. Taiyuan:Taiyuan University of Technology,2022.
    [12]
    郭资鉴,孟令宇. 液压缸负载模拟实验台设计[J]. 煤矿机械,2023,44(6):27-30.

    GUO Zijian,MENG Lingyu. Design of hydraulic cylinder load simulation test platform[J]. Coal Mine Machinery,2023,44(6):27-30.
    [13]
    曹超,赵继云,高凯,等. 液压支架供液系统快速泵控补液稳压方法研究 [J/OL]. 煤炭科学技术:1-12[2024-11-21]. http://kns.cnki.net/kcms/detail/ 11.2402.TD.20240613.1528.007.html.

    CAO Chao,ZHAO Jiyun,GAO Kai,et al. Study on the method of fast pump-controlled rehydration and pressure stabilization for hydraulic support liquid supply system[J/OL]. Coal Science and Technology:1-12 [2024-11-21]. http://kns.cnki.net/kcms/detail/11.2402. TD.20240613.1528.007.html.
    [14]
    李小玉. 刮板输送机传动冲击形成机理研究[D]. 徐州:中国矿业大学,2021.

    LI Xiaoyu. Research on mechanism of transmission impact of scraper conveyor[D]. Xuzhou:China University of Mining and Technology,2021.
    [15]
    王鑫. 刮板输送机异常载荷下动力学特性研究[D]. 阜新:辽宁工程技术大学,2021.

    WANG Xin. Research on dynamic characteristics of scraper conveyor under abnormal load[D]. Fuxin:Liaoning Technical University,2021.
    [16]
    穆健勇,吕善超,王创举,等. 集成调速功能的电液主阀:CN114165265A[P]. 2022-03-11.

    MU Jianyong,LYU Shanchao,WANG Chuangju,et al. Electro-hydraulic main valve with integrated speed regulation function:CN114165265A[P]. 2022-03-11.
    [17]
    周如林,黄园月,乔子石,等. 一种调速阀及液压支架上用联动调速油路:CN114151113A[P]. 2022-03-08.

    ZHOU Rulin,HUANG Yuanyue,QIAO Zishi,et al. A speed control valve and a linked speed control oil circuit for use on hydraulic supports:CN114151113A[P]. 2022-03-08.
    [18]
    王世博,张辉. 综采工作面推移动力学模型与仿真分析[J]. 机械工程学报,2022,58(7):117-130. DOI: 10.3901/JME.2022.07.117

    WANG Shibo,ZHANG Hui. Dynamic model and simulation analysis of advancement of fully mechanized mining face[J]. Journal of Mechanical Engineering,2022,58(7):117-130. DOI: 10.3901/JME.2022.07.117
    [19]
    王国法. 液压支架控制技术[M]. 北京:煤炭工业出版社,2010.

    WANG Guofa. Control techenology of powered support[M]. Beijing:China Coal Industry Publishing House,2010.
    [20]
    李俊士. 矿用电磁先导阀换向特性低功耗测试平台设计[J]. 工矿自动化,2022,48(12):158-163.

    LI Junshi. Design of low-power test platform for reversing characteristics of mine solenoid pilot valve[J]. Journal of Mine Automation,2022,48(12):158-163.
    [21]
    蒋佑华,曹建波,胡小雄. 一种直流电磁铁响应时间的测试方法[J]. 液压气动与密封,2017,37(10):52-53. DOI: 10.3969/j.issn.1008-0813.2017.10.017

    JIANG Youhua,CAO Jianbo,HU Xiaoxiong. A test method of response time for DC electromagnet[J]. Hydraulics Pneumatics & Seals,2017,37(10):52-53. DOI: 10.3969/j.issn.1008-0813.2017.10.017
  • Related Articles

    [1]PU Yang, SONG Zhiqiang, NING Xiaoliang. Construction and application of multivariate data visualization system for coal and gas outburst predictio[J]. Journal of Mine Automation, 2020, 46(7): 64-69. DOI: 10.13272/j.issn.1671-251x.2020020054
    [2]CHEN Xiaolin, SUN Jinyu. Design of an intelligent seperated style gas inspection system for coal mine[J]. Journal of Mine Automation, 2016, 42(8): 6-9. DOI: 10.13272/j.issn.1671-251x.2016.08.002
    [3]DONG Dingwen, QU Shijia, WANG Honggang. Pre-warning method of gas concentration based on correlation analysis of monitoring data[J]. Journal of Mine Automation, 2015, 41(6): 1-5. DOI: 10.13272/j.issn.1671-251x.2015.06.001
    [4]QU Peng. Early warning system of shaft wall deformation based on optimization GM(1, 1)[J]. Journal of Mine Automation, 2014, 40(10): 64-67. DOI: 10.13272/j.issn.1671-251x.2014.10.017
    [5]FANG Gang, DI Ming, LIU Han-yong, DANG Chun-cai, LAN Wei. Early warning system for coal mine safety production based on fuzzy-analytical hierarchy process[J]. Journal of Mine Automation, 2013, 39(11): 98-102. DOI: 10.7526/j.issn.1671-251X.2013.11.026
    [6]DUAN Li-hong. Design of pre-warning system of coal mine water disaster[J]. Journal of Mine Automation, 2013, 39(9): 116-118. DOI: 10.7526/j.issn.1671-251X.2013.09.030
    [7]LI Hao-min, LU Jian-jun, WEI Che. Research of coal mine safety monitoring and early warning system based on cloud computing[J]. Journal of Mine Automation, 2013, 39(3): 46-49.
    [8]WANG Wei-feng, DENG Jun, WANG Cai-ping, FEI Jin-biao. Design of Wireless Remote Monitoring and Early-warning System of Coalfield Fire[J]. Journal of Mine Automation, 2012, 38(6): 1-3.
    [9]YAN Zhao-zhe. Design of Gas Abnormality Early-warning System of Coal Mine[J]. Journal of Mine Automation, 2011, 37(11): 1-3.
    [10]QIAO Shu-yun, LI De-chen, SHAO Xiao-ge. Design of Monitoring and Early Warning System for Coal Mine Grid Disaster and Its Implementatio[J]. Journal of Mine Automation, 2009, 35(1): 57-59.
  • Cited by

    Periodical cited type(6)

    1. 李亚勉,涂敏,赵庆冲,党嘉鑫,孙靖康. 深部巷道塑性区发育及巷道围岩变形解析. 煤矿机械. 2025(02): 96-99 .
    2. 王红. 巷道围岩承载层演化机理及特性分析. 山西冶金. 2024(04): 109-111 .
    3. 樊小峰,董情. 深埋软岩巷道围岩变形控制一体化支护技术. 能源与环保. 2023(03): 275-280 .
    4. 于建新,刘文金,王金星,刘焕春,周志彬. 层状岩体隧道爆破对支护体系的振动影响研究. 现代隧道技术. 2023(05): 99-110+119 .
    5. 柴敬,乔钰,高士岗,高登彦,陈苏社,吕情绪,杜文刚,韩志成. 分层开采下分层大断面开切眼顶板稳定性评估. 工矿自动化. 2022(05): 21-31 . 本站查看
    6. 李建平. 11-104回风顺槽分区域差异性联合支护技术应用. 江西煤炭科技. 2021(04): 12-14 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (39) PDF downloads (14) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return