LI Yun, LUO Wei, YIN Bo, et al. Analysis of metasurface reflection tests for wireless transmission in mine roadways[J]. Journal of Mine Automation,2025,51(2):41-47, 56. DOI: 10.13272/j.issn.1671-251x.2024110082
Citation: LI Yun, LUO Wei, YIN Bo, et al. Analysis of metasurface reflection tests for wireless transmission in mine roadways[J]. Journal of Mine Automation,2025,51(2):41-47, 56. DOI: 10.13272/j.issn.1671-251x.2024110082

Analysis of metasurface reflection tests for wireless transmission in mine roadways

More Information
  • Received Date: November 26, 2024
  • Revised Date: February 09, 2025
  • Available Online: January 05, 2025
  • High-frequency wireless electromagnetic waves suffer significant transmission loss in curved roadways and at roadway corners, resulting in signal blind spots. To address this issue, a metasurface reflection technique was proposed to enhance wireless signal coverage and mitigate signal blind spots. The traditional cross-shaped structure of the metasurface array unit was improved, and a 330° phase shift range and a well-defined linear phase shift curve were achieved by embedding multi-level nested rectangular resonators and adjusting the internal cross dimensions. Based on this, a metasurface reflection device was designed and fabricated. Using the 5.8 GHz ultra-high frequency band, simulations and field tests were conducted to evaluate the signal enhancement performance of the metasurface reflection device in the inclined curved section and the intersection of main and auxiliary sections in the Qingshuixi roadway. The results showed that, with fixed transmission and reception distances and different transmission antenna structures, the installation of the metasurface reflection device enhanced both the signal-to-noise ratio and the reference signal receiving power to varying degrees in both the inclined curved section of roadways and the intersection of main and auxiliary sections. The enhancement was most significant when using a linearly polarized horn directional antenna, with a maximum gain of 13 dB in received reference signal power. The analysis highlighted challenges in applying passive metasurface reflection technology in mine roadways, including difficulties in aligning the incident wave angle, focusing the beam, and achieving sufficient wave incidence distance. Based on the test results, fixed installation of metasurface reflection devices at roadway intersections is recommended for point-to-point transmission blind spot mitigation.

  • [1]
    王国法,任怀伟,赵国瑞,等. 煤矿智能化十大“痛点”解析及对策[J]. 工矿自动化,2021,47(6):1-11.

    WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Analysis and countermeasures of ten 'pain points' of intelligent coal mine[J]. Industry and Mine Automation,2021,47(6):1-11.
    [2]
    王国法,刘峰,庞义辉,等. 煤矿智能化——煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349-357.

    WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349-357.
    [3]
    孙继平,梁伟锋,彭铭,等. 煤矿井下无线传输衰减分析测试与最佳工作频段研究[J]. 工矿自动化,2023,49(4):1-8.

    SUN Jiping,LIANG Weifeng,PENG Ming,et al. Analysis and testing of wireless transmission attenuation in coal mine underground and research on the optimal operating frequency band[J]. Journal of Mine Automation,2023,49(4):1-8.
    [4]
    孙继平. 矿井无线传输的特点[J]. 煤矿设计,1999(4):20-22.

    SUN Jiping. Characteristics of wireless transmission in mines[J]. Coal Mine Design,1999(4):20-22.
    [5]
    石庆冬,孙继平. 弯曲矩形隧道电磁波衰减特性[J]. 中国矿业大学学报,2001(1):91-93. DOI: 10.3321/j.issn:1000-1964.2001.01.022

    SHI Qingdong,SUN Jiping. Attenuation characteristic of guided EM waves in curved rectangular mine tunnel[J]. Journal of China University of Mining & Technology,2001(1):91-93. DOI: 10.3321/j.issn:1000-1964.2001.01.022
    [6]
    李大伟. 受限空间电波覆盖特性的研究[D]. 北京:北京交通大学,2016.

    LI Dawei. Research on the radio coverage characteristics in confined space[D]. Beijing:Beijing Jiaotong University,2016.
    [7]
    TALBI L,GHADDAR M. Experimental characterization of NLOS broadband millimeter wave links[C]. Institution of Engineering and Technology International Conference on Wireless Communications and Applications,Kuala Lumpur,2012. DOI: 10.1049/cp.2012.2073.
    [8]
    KIM B,KIM H,CHOI D,et al. 28 GHz propagation analysis for passive repeaters in NLOS channel environment[C]. The 9th European Conference on Antennas and Propagation,Lisbon,2015:1-4.
    [9]
    HA D,CHOI D,KIM H,et al. Passive repeater for removal of blind spot in NLOS path for 5G fixed wireless access (FWA) system[C]. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting,San Diego,2017. DOI: 10.1109/apusncursinrsm.2017.8073067.
    [10]
    刘海霞,易浩,马向进,等. 基于无源可重构智能超表面的室内无线信号覆盖增强[J]. 通信学报,2022,43(12):32-44. DOI: 10.11959/j.issn.1000-436x.2022229

    LIU Haixia,YI Hao,MA Xiangjin,et al. Indoor wireless signal coverage and enhancement based on passive reconfigurable intelligent metasurface[J]. Journal on Communications,2022,43(12):32-44. DOI: 10.11959/j.issn.1000-436x.2022229
    [11]
    费丹,陈晨,郑鹏,等. 基于智能超表面的室内覆盖增强技术研究与实验验证[J]. 电子与信息学报,2022,44(7):2374-2381. DOI: 10.11999/JEIT220068

    FEI Dan,CHEN Chen,ZHENG Peng,et al. Research and experimental verification of reconfigurable intelligent surface in indoor coverage enhancement[J]. Journal of Electronics & Information Technology,2022,44(7):2374-2381. DOI: 10.11999/JEIT220068
    [12]
    李世银,张鹏,闵明慧,等. 智能反射面技术及其在煤矿井下无线盲区覆盖的应用探讨[J]. 工矿自动化,2023,49(6):112-119.

    LI Shiyin,ZHANG Peng,MIN Minghui,et al. Discussion on intelligent reflecting surface technology and its application in wireless blind spot coverage in coal mines[J]. Journal of Mine Automation,2023,49(6):112-119.
    [13]
    李世银,杨瑞鑫,杨磊,等. 煤矿井下智能超表面非视距无线覆盖技术综述[J]. 中国矿业大学学报,2024,53(3):613-622.

    LI Shiyin,YANG Ruixin,YANG Lei,et al. Survey of the non-line-of-sight wireless coverage technology by reconfigurable intelligent surfaces in underground coal mines[J]. Journal of China University of Mining & Technology,2024,53(3):613-622.
    [14]
    WU Qingqing,ZHENG Shuowen,ZHENG Beixiong,et al. Intelligent reflecting surface-aided wireless communications:a tutorial[J]. IEEE Transactions on Communications,2021,69(5):3313-3351. DOI: 10.1109/TCOMM.2021.3051897
    [15]
    HUM S V,OKONIEWSKI M,DAVIES R J. Realizing an electronically tunable reflectarray using varactor diode-tuned elements[J]. IEEE Microwave and Wireless Components Letters:a Publication of the IEEE Microwave Theory and Techniques Society,2005,15(6):422-424.
    [16]
    RIEL M,LAURIN J. Design of an electronically beam scanning reflectarray using aperturecoupled elements[J]. IEEE Transactions on Antennas and Propagation,2007,55(5):1260-1266. DOI: 10.1109/TAP.2007.895586
    [17]
    MAKDISSY T, GILLARD R, FOURN E, et al. Phase-shifting cell loaded with variable capacitances for dual inearly polarized reflectarrays[J]. Electronics Letters, 2012, 48(21): 1319-1320.
    [18]
    DORST L,FONTIJNE D,MANN S. Geometric algebra for computer science[M]. Amsterdam:Elsevier Science Ltd.,2007.
    [19]
    李双德,刘芫健,林乐科. 28 GHz室内毫米波信道路径损耗模型研究[J]. 电波科学学报,2017,32(5):602-611.

    LI Shuangde,LIU Yuanjian,LIN Leke. Path loss models of millimeter-wave channel in indoor environment at 28 GHz[J]. Chinese Journal of Radio Science,2017,32(5):602-611.
    [20]
    方遥. 宽带平面反射阵设计及5G毫米波室内通信应用研究[D]. 西安:西安电子科技大学,2019.

    FANG Yao. Research on the design of broadband reflectarray antenna for indoor 5G millimeter wave communication applications[D]. Xi'an:Xi'an University of Electronic Science and Technology,2019.
    [21]
    乐舒瑶. 基于可重构反射超表面的室内无线信号覆盖[D]. 西安:西安电子科技大学,2022.

    LE Shuyao. Indoor wireless signal coverage based on reconfigurable reflective metasurfaces[D]. Xi'an:Xi'an University of Electronic Science and Technology,2022.
  • Related Articles

    [1]LIU Hai, WANG Qiyao, GAO Peng, WANG Xinyan, FENG Xingyu, CUI Hongzhong, GAO Pengfei. Design of terahertz metasurface methane sensor based on bound states in the continuum[J]. Journal of Mine Automation, 2025, 51(2): 48-56. DOI: 10.13272/j.issn.1671-251x.18220
    [2]LIU Hai, ZHOU Tong, CHEN Cong, GAO Peng, DAI Yaowei, WANG Xiaolin, DUAN Senhao, GAO Zongyang. Design of all dielectric metasurface methane sensor based on Fano resonance[J]. Journal of Mine Automation, 2023, 49(9): 106-114. DOI: 10.13272/j.issn.1671-251x.18108
    [3]LI Shiyin, ZHANG Peng, MIN Minghui, LI Zhiwei, ZHANG Mengdi, XIAO Jiayang. Discussion on intelligent reflecting surface technology and its application in wireless blind spot coverage in coal mines[J]. Journal of Mine Automation, 2023, 49(6): 112-119. DOI: 10.13272/j.issn.1671-251x.18137
    [4]LIU Hai, WAN Yinhui, CHEN Cong, GAO Peng, DAI Yaowei, ZHAO Jiaming, WANG Xinyan, LU Xiangyu, ZHAO Siyi. Design of metasurface dual-gas sensor based on VO2[J]. Journal of Mine Automation, 2023, 49(1): 19-27, 79. DOI: 10.13272/j.issn.1671-251x.18041
    [5]FANG Chongquan. Design of mine-used intrinsically safe line array X-ray receiving box[J]. Journal of Mine Automation, 2021, 47(1): 112-117. DOI: 10.13272/j.issn.1671-251x.2020050022
    [6]CHEN Li. Analysis of reflection of signal integrity of transmission line[J]. Journal of Mine Automation, 2014, 40(3): 49-52. DOI: 10.13272/j.issn.1671-251x.2014.03.014
    [7]XU Shi-min, JIA Hong-gang. Design of a Mine-used Large-scale LED Array Display Screen with Mosaic Type[J]. Journal of Mine Automation, 2011, 37(6): 17-19.
    [8]ZHOU Xin, MIAO Chang-yun, LI Yan-feng, WU Zhi-gang. Optimization of CS-ACELP Voice Code Algorithm and Its Implementation on DSP[J]. Journal of Mine Automation, 2009, 35(12): 69-72.
    [9]WU Xing-hua. Design of Wireless Motor-ID Coding Sensor Based on WinCE Embedded System[J]. Journal of Mine Automation, 2008, 34(6): 33-36.
    [10]CAO Wen, SUN Wei, ZHAO Hui. Application Based on Ethernet of Microsoft Office Access in Query System of RSView Report Formas[J]. Journal of Mine Automation, 2007, 33(5): 123-124.

Catalog

    Article Metrics

    Article views (49) PDF downloads (9) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return