NI Jingfeng, CHEN Dunwei, LIU Yujiao. Precise wind allocation scheme decision based on attraction-repulsion algorithm[J]. Journal of Mine Automation,2025,51(4):28-35, 43. DOI: 10.13272/j.issn.1671-251x.2024110006
Citation: NI Jingfeng, CHEN Dunwei, LIU Yujiao. Precise wind allocation scheme decision based on attraction-repulsion algorithm[J]. Journal of Mine Automation,2025,51(4):28-35, 43. DOI: 10.13272/j.issn.1671-251x.2024110006

Precise wind allocation scheme decision based on attraction-repulsion algorithm

More Information
  • Received Date: November 03, 2024
  • Revised Date: April 13, 2025
  • Available Online: April 08, 2025
  • To address the issue of fluctuating branch airflow in the ventilation system caused by changes in mine ventilation facilities and air network structure during underground production operations, which in turn leads to insufficient airflow at consumption points, a precise wind allocation algorithm based on the Attraction-Repulsion Optimization Algorithm (AROA) is proposed. The ventilation fan power consumption minimization was set as the optimization objective, with the required airflow for working and standby faces as constraints, and a mathematical model of the mine ventilation system was established. By employing AROA, the ventilation fan and existing underground ventilation facilities were precisely controlled, and an optimized solution was iteratively generated. During the optimization process, an improved Brownian motion, trigonometric function transformation, random solution selection mechanism, and memory-based local search operator were integrated to dynamically filter and fine-tune candidate solutions, ultimately achieving an optimal precise wind allocation plan with the lowest ventilation operation cost. Performance test results showed that AROA had a significant advantage in comprehensive optimization performance compared to Genetic Algorithm (GA), Simulated Annealing-Improved Particle Swarm Optimization (SA-IPSO), and Monotonic Basin Hopping (MBH). When solving the Ackley function, AROA required fewer iterations to obtain the optimal and average optimal solutions compared to GA, SA-IPSO, and MBH. Case study results showed that the precise wind allocation scheme determined by the AROA-based algorithm resulted in a 50.4% adjustment in the air window area. The left-wing fan power decreased from 131.72 kW to 97.95 kW (a reduction of 25.6%), and the right-wing fan power decreased from 188.22 kW to 146.62 kW (a reduction of 22.1%), achieving a total energy-saving rate of 23.56%. Actual application results in a coal mine demonstrated that the AROA-based algorithm reduced the fan airflow by 11.2%, while the fan air pressure decreased by 10.1%, ultimately achieving a 20.7% reduction in power consumption. The precise wind allocation scheme determined by the AROA-based algorithm reduced fan air pressure by 10.1%, fan airflow by 11.2%, and power by 20.7%.

  • [1]
    陈林,谢勇强,罗云勇. 矿井通风网络优化的调节与实现[J]. 昆明冶金高等专科学校学报,2022,38(6):30-35.

    CHEN Lin,XIE Yongqiang,LUO Yunyong. Research and realization of the optimization of mine ventilation network[J]. Journal of Kunming Metallurgy College,2022,38(6):30-35.
    [2]
    司俊鸿,王小军,黄欣. 基于改进DE算法的矿井通风网络非线性优化求解[J]. 煤炭工程,2016,48(3):64-67.

    SI Junhong,WANG Xiaojun,HUANG Xin. A modified differential evolution algorithm for nonlinear optimization solution of mine ventilation network[J]. Coal Engineering,2016,48(3):64-67.
    [3]
    吴新忠,张芝超,王凯,等. 基于DE−GWO算法的矿井风网风量调节方法[J]. 中南大学学报(自然科学版),2021,52(11):3981-3989. DOI: 10.11817/j.issn.1672-7207.2021.11.019

    WU Xinzhong,ZHANG Zhichao,WANG Kai,et al. Method for adjusting air volume of mine ventilation network based on DE-GWO algorithm[J]. Journal of Central South University (Science and Technology),2021,52(11):3981-3989. DOI: 10.11817/j.issn.1672-7207.2021.11.019
    [4]
    王海宁,彭斌,彭家兰,等. 基于三维仿真的矿井通风系统及其优化研究[J]. 中国安全科学学报,2013,23(9):123-128. DOI: 10.3969/j.issn.1003-3033.2013.09.021

    WANG Haining,PENG Bin,PENG Jialan,et al. Study on mine ventilation system and its optimization based on 3D simulation[J]. China Safety Science Journal,2013,23(9):123-128. DOI: 10.3969/j.issn.1003-3033.2013.09.021
    [5]
    吴新忠,胡建豪,魏连江,等. 矿井通风网络的反向增强型烟花算法优化研究[J]. 工矿自动化,2019,45(10):17-22,67.

    WU Xinzhong,HU Jianhao,WEI Lianjiang,et al. Research on opposition-based enhanced fireworks algorithm optimization for mine ventilation network[J]. Industry and Mine Automation,2019,45(10):17-22,67.
    [6]
    宋佳林. IPSO−TS算法在矿井通风网络风量优化中的应用研究[J]. 矿业安全与环保,2022,49(2):78-82.

    SONG Jialin. Application of IPSO-TS algorithm in air volume optimization of mine ventilation network[J]. Mining Safety & Environmental Protection,2022,49(2):78-82.
    [7]
    张兴国,周玉. 基于ACPSO算法的矿井通风网络解算研究[J]. 辽宁工程技术大学学报(社会科学版),2018,20(4):305-311. DOI: 10.11955/j.issn.1008-391x.20180410

    ZHANG Xingguo,ZHOU Yu. Study on ACPSO algorithm for mine ventilation network[J]. Journal of Liaoning Technical University(Social Science Edition),2018,20(4):305-311. DOI: 10.11955/j.issn.1008-391x.20180410
    [8]
    郭一楠,王春,杨继超. 基于文化粒子群优化算法的矿井通风网络[J]. 东南大学学报(自然科学版),2013,43(增刊1):48-53.

    GUO Yinan,WANG Chun,YANG Jichao. Mine ventilation network based on cultural particle swarm optimization algorithm[J]. Journal of Southeast University (Natural Science Edition),2013,43(S1):48-53.
    [9]
    LI Junqiao,LI Yucheng,ZHANG Wei,et al. Multi- objective intelligent decision and linkage control algorithm for mine ventilation[J]. Energies,2022,15(21). DOI: 10.3390/EN15217980.
    [10]
    韩正化. 基于麻雀搜索算法的矿井风量智能优化调控[D]. 徐州:中国矿业大学,2022.

    HAN Zhenghua. Intelligent optimal regulation of mine air volume based on sparrow search algorithm[D]. Xuzhou:China University of Mining and Technology,2022.
    [11]
    厍向阳,史经俭,罗晓霞. 栅格数据模型中附有条件的最短路径算法[J]. 计算机应用,2008(4):856-859.

    SHE Xiangyang,SHI Jingjian,LUO Xiaoxia. Shortest path algorithm confined to conditions in grid data model[J]. Journal of Computer Applications,2008(4):856-859.
    [12]
    WANG Jinmiao,XIAO Jun,XUE Yan,et al. Optimization of airflow distribution in mine ventilation networks using the modified sooty tern optimization algorithm[J]. Mining,Metallurgy & Exploration,2023,41(1):239-257.
    [13]
    CYMERYS K,OSZUST M. Attraction–repulsion optimization algorithm for global optimization problems[J]. Swarm and Evolutionary Computation,2024. DOI: 10.1016/J.SWEVO.2023.101459.
    [14]
    KENNEDY J,EBERHART R. Particle swarm optimization[C]. International Conference on Neural Networks,Perth,1995:1942-1948.
    [15]
    ASKARI Q,YOUNAS I,SAEED M. Political optimizer:a novel socio-inspired meta-heuristic for global optimization[J]. Knowledge-Based Systems,2020. DOI: 10.1016/j.knosys.2020.105709.
    [16]
    陈乐天,袁红,孙昌璞. 布朗运动理论及其在复杂气候系统研究中的应用[J]. 物理,2022,51(9):588-601. DOI: 10.7693/wl20220901

    CHEN Letian,YUAN Hong,SUN Changpu. Brownian motion theory and its application in the study of complex climate systems[J]. Physics,2022,51(9):588-601. DOI: 10.7693/wl20220901
    [17]
    UR R H,REHAN A,ABDUL-MAJID W,et al. Analysis of Brownian motion in stochastic schrödinger wave equation using sardar sub-equation method[J]. Optik,2023,289. DOI: 10.1016/J.IJLEO.2023.171305.
    [18]
    曹亚丽,余牧舟,杨俊峰,等. 一种改进的人工蜂群算法研究[J]. 现代电子技术,2020,43(12):133-137,141.

    CAO Yali,YU Muzhou,YANG Junfeng,et al. Research on an improved artificial bee colony algorithm[J]. Modern Electronics Technique,2020,43(12):133-137,141.
    [19]
    陈永强,张显涛. 基于NSGA−Ⅱ算法与离散模块梁单元水弹性方法的连接件优化设计分析[J/OL]. 中国舰船研究:1-10 [2024-10-25]. https://doi.org/10.19693/j.issn.1673-3185.04337.

    CHEN Yongqiang,ZHANG Xiantao. Optimization design of connectors using the discrete-module-beam hydroelasticity method and NSGA-II algorithm[J]. Chinese Journal of Ship Research:1-10 [2024-10-25]. https://doi.org/10.19693/j.issn.1673-3185.04337.
    [20]
    邵良杉,王振,李昌明. 基于模拟退火与改进粒子群的矿井通风优化算法[J]. 系统仿真学报,2021,33(9):2085-2094.

    SHAO Liangshan,WANG Zhen,LI Changming. Optimization algorithm of mine ventilation based on SA-IPSO[J]. Journal of System Simulation,2021,33(9):2085-2094.
    [21]
    孟思彤. 基于单调盆地跳跃算法的矿井风量优化研究[D]. 阜新:辽宁工程技术大学,2023.

    MENG Sitong. Study on optimization of mine air volume based on monotone basin jump algorithm[D]. Fuxin:Liaoning Technical University,2023.
  • Related Articles

    [1]WU Fengliang, KOU Lu. Automatic recognition method of ventilator wind pressure performance curve for mine ventilation network calculation[J]. Journal of Mine Automation, 2024, 50(4): 103-111. DOI: 10.13272/j.issn.1671-251x.2023100036
    [2]ZHANG Wen-bin, LIU Xian-pu. Application of Energy Recovery System for Pressure Fan in Juji Coal Preparation Plant[J]. Journal of Mine Automation, 2012, 38(11): 87-89.
    [3]Obul Aydin, GUO Hui, JI Shu-wen. Design of Double Local-fans Automatic Switching System of Underground Working Face[J]. Journal of Mine Automation, 2011, 37(11): 110-112.
    [4]LI Shu-rong. Reformation Scheme of Energy Saving with High-voltage Frequency Conversion Speed Regulation of Exhaust Fan of Dong’er Air Shaft[J]. Journal of Mine Automation, 2011, 37(11): 108-110.
    [5]TAO Zhi-yong. Application of Frequency-conversion Technology in Fans of Boiler[J]. Journal of Mine Automation, 2011, 37(5): 82-84.
    [6]LIU Shi-guang, WANG Hai-qiao, ZHONG Wu. Research of a New Type of Measuring Device for Air Flow and Air Pressure of Mine-used Local Fa[J]. Journal of Mine Automation, 2010, 36(4): 11-14.
    [7]QIAO Lei-ming. Design of Monitoring and COntrol System of Main Fan for Mine Ventilation and Its Applicatio[J]. Journal of Mine Automation, 2008, 34(6): 111-113.
    [8]CHEN Kai, LIU Zi-cheng, YANG Shao-hua. Reform of Switch with Double-fan and Double-power and Its Applicatio[J]. Journal of Mine Automation, 2004, 30(6): 50-51.
    [9]GUO Jia-hu, WANG Jing. Frequency Conversion Control System of Local Fan of Ventilator[J]. Journal of Mine Automation, 2003, 29(3): 24-25.
    [10]LU Yong-geng. Real-time Dynamic Monitoring System for Parameters of Mine Fan Air Volume[J]. Journal of Mine Automation, 2000, 26(2): 43-44.
  • Cited by

    Periodical cited type(40)

    1. 王立涛,邱黎明,韦梦菡,宋大钊,苟仁涛,刘琳,钟时强,谢天逸. 基于DBO-VMD滤波的煤岩爆破电磁信号时-频特征. 工程科学学报. 2025(03): 441-453 .
    2. 孙康,刘强,邱黎明,李振雷,王超杰,孙谦,刘海瑞,王立涛. 煤样受载破坏电阻率-应力-损伤耦合规律及机制研究. 工矿自动化. 2025(02): 155-162 . 本站查看
    3. 何志龙,孙谦,宋大钊. 安顺煤矿煤岩电磁辐射测试技术研究. 山东煤炭科技. 2024(02): 103-108 .
    4. 杨科,范超尘,刘静波,吴劲松,池小楼,张杰. 极复杂条件煤层智能化开采安全保障体系及关键技术. 矿业研究与开发. 2024(03): 164-170 .
    5. 郭明功,李延河,宋大钊,杨港,邱黎明,杨乘. 深部极近距离煤层群开采底抽巷层位布置研究. 煤矿安全. 2024(03): 155-165 .
    6. 宋大钊,童永军,邱黎明,韦梦菡,王满,郭明功. 花岗岩劈裂破坏电磁-震动有效信号重构与混沌特征. 煤炭学报. 2024(03): 1375-1387 .
    7. 王峰,刘强,邱黎明,刘勇,徐九洲,郭明功,马涛,张国雷. 不同变异系数煤层应力场与瓦斯场规律的数值模拟研究. 西安科技大学学报. 2024(02): 268-278 .
    8. 李宇杰,刘小鹏. 煤矿开采瓦斯突出致灾机制与治理技术研究进展. 采矿技术. 2024(06): 159-166 .
    9. 张志刚,张庆华,刘军. 我国煤与瓦斯突出及复合动力灾害预警系统研究进展及展望. 煤炭学报. 2024(S2): 911-923 .
    10. 郭欢欢,邱黎明,刘强,杨乘. 薄煤层开采覆岩“三带”可视化探测方法研究. 煤矿安全. 2023(08): 73-80 .
    11. 梁运培,郑梦浩,李全贵,毛树人,栗小雨,李建波,周俊江. 我国煤与瓦斯突出预测与预警研究现状. 煤炭学报. 2023(08): 2976-2994 .
    12. 陈强,刘祥洁,廖石宝. 基于GA-BP的煤矿瓦斯监控系统“大数干扰”信号辨识. 机电工程技术. 2023(12): 204-206+272 .
    13. 张楠,徐九洲,邱黎明. 突出薄煤层中间巷掩护掘进消突技术研究. 工矿自动化. 2022(03): 40-46 . 本站查看
    14. 郭欢欢,胡家喻,邱黎明. 突出煤层孤岛工作面多场演化规律及瓦斯灾害防治技术. 西安科技大学学报. 2022(02): 227-236 .
    15. 戚昱. 基于物联网的瓦斯突出预警监测系统设计. 煤炭技术. 2022(05): 226-228 .
    16. 田茂林. 矿用激光甲烷传感器的设计及应用研究. 内蒙古石油化工. 2022(04): 20-22 .
    17. 程肖禾,宋大钊,邱黎明,王洪磊,王安虎. 含气体突出煤岩纵波波速与应力耦合关系研究. 煤矿安全. 2021(01): 36-41 .
    18. 胡旭东,郝建新. 塔山煤矿上覆煤层遗留煤柱水力致裂卸压技术应用实践. 山东煤炭科技. 2021(01): 161-164 .
    19. 李杰,邱黎明,殷山,刘洋,童永军. 煤岩膨胀破裂应变及声发射特征实验研究. 工矿自动化. 2021(02): 63-69+74 . 本站查看
    20. 袁亮. 煤矿典型动力灾害风险判识及监控预警技术“十三五”研究进展. 矿业科学学报. 2021(01): 1-8 .
    21. 衡献伟,李青松,付金磊,左金芳. 贵州煤炭工业科技创新进展及“十四五”时期发展方向. 中国煤炭. 2021(05): 13-19 .
    22. 宋大钊,何学秋,邱黎明,赵英杰,程肖禾,王安虎. 区域和局部突出危险性动态实时监测预警技术研究. 煤炭科学技术. 2021(05): 110-119 .
    23. 刘强,邱黎明,祖自银,罗卫东,韦善阳,程肖禾,殷山. 含裂隙煤样受载破坏过程视电阻分布特征. 西安科技大学学报. 2021(04): 731-738 .
    24. 郭海峰,宋大钊,何学秋,娄全,邱黎明. 冲击倾向性煤不同损伤程度声发射分形特征研究. 煤炭科学技术. 2021(09): 38-46 .
    25. 刘彦武. 基于智能通风的火灾和瓦斯突出灾变管控系统探讨. 山西焦煤科技. 2021(08): 47-52 .
    26. 肖钰哲,邱黎明,田向辉,周超,刘洋. 煤受载破坏声电信号波形持续时间特征研究. 煤矿安全. 2021(11): 63-68 .
    27. 陈凯,戴英健,张丽娟,李小龙. 基于煤与瓦斯突出声电实时监测预警系统的应用研究. 科技视界. 2021(34): 159-161 .
    28. 唐巨鹏,任凌冉,潘一山,孙胜杰. 深部煤与瓦斯突出孕育全过程声发射前兆信号变化规律研究. 实验力学. 2021(06): 827-837 .
    29. 刘明,曹民远,吴玉海,李波. 屯宝煤矿逆断层破碎带巷道变形控制研究. 工矿自动化. 2020(04): 98-103 . 本站查看
    30. 王伟象,宋大钊,何学秋,邱黎明,娄全,郭海峰. 煤微表面形貌和电势特征及其对电磁辐射的影响. 西安科技大学学报. 2020(03): 424-433 .
    31. 刘洋,邱黎明,娄全,韦梦菡,殷山,李鹏鹏,程肖禾. 岩石受载破坏过程声电信号时频特征研究. 工矿自动化. 2020(06): 87-91 . 本站查看
    32. 宁小亮. 基于多源信息融合的煤与瓦斯突出动态预警模型. 矿业安全与环保. 2020(03): 1-5+16 .
    33. 宁小亮. 基于大数据的煤与瓦斯突出预警技术. 矿业安全与环保. 2020(04): 51-56 .
    34. 刘明,曹民远,李波. 综放工作面煤柱周围应力分布特征研究. 工矿自动化. 2020(10): 104-108+113 . 本站查看
    35. 王恩元,李忠辉,李德行,刘晓斐,李金铎. 电磁辐射监测技术装备在煤与瓦斯突出监测预警中的应用. 煤矿安全. 2020(10): 46-51 .
    36. 曹康,李忠辉,余得胜,周明,张酉年,夏善奎. 掘进工作面煤与瓦斯突出前兆特征及综合预警研究. 煤炭科学技术. 2020(11): 147-152 .
    37. 张庆华,马国龙. 我国煤矿重大灾害预警技术现状及智能化发展展望. 智能矿山. 2020(01): 52-62 .
    38. 王璐. 煤矿安全监控系统中无线激光甲烷传感器的研究与设计. 煤炭技术. 2019(08): 154-158 .
    39. 宁小亮. 煤与瓦斯突出预警技术研究现状及发展趋势. 工矿自动化. 2019(08): 25-31+37 . 本站查看
    40. 徐剑坤,习丹阳,余鑫. 煤单轴破坏同步声电场响应规律试验研究. 煤矿安全. 2019(10): 54-57 .

    Other cited types(13)

Catalog

    Article Metrics

    Article views (29) PDF downloads (5) Cited by(53)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return