Citation: | ZHANG Yongqi, WANG Jie, ZHOU Yuhao, et al. Research status and development trends of dust concentration monitoring technology[J]. Journal of Mine Automation,2024,50(12):111-119, 165. DOI: 10.13272/j.issn.1671-251x.2024100076 |
This paper introduces the measurement principles of various domestic and international dust concentration continuous monitoring technologies, including the filter weighing method, β-ray method, light scattering method, charge induction method, and micro-oscillating balance method. It compares and analyzes the advantages and limitations of these monitoring technologies in terms of accuracy, sensitivity, and real-time performance. The paper also delves into the continuous separation technologies and standards for respirable dust particles on a global scale and systematically examines the challenges that current dust concentration continuous monitoring technologies face in terms of instrumental measurement precision, reliability, stability, environmental adaptability, intelligent automatic calibration, and power consumption optimization. The discussion covers the development trends in dust concentration monitoring technology: the shift from traditional single total dust concentration monitoring to a combined monitoring of total and respirable dust, and rapid transition from point monitoring to area monitoring and regional monitoring. It is proposed that future efforts should be dedicated to integrating dust concentration monitoring technologies with emerging technologies such as machine learning, deep learning, computer vision, and big data analysis and prediction. This integration will facilitate the integration and application of intelligent detection technologies with dust-related occupational hazard monitoring and early warning systems and provide reference for intelligent and automated dust control in future industrial scenarios.
[1] |
郑丽娜,范钰雪,刘豆,等. 粉尘粒径分布检测技术现状与应用进展[J]. 安全与环境学报,2024,24(10):3876-3888.
ZHENG Lina,FAN Yuxue,LIU Dou,et al. Current status and progress in dust particle size distribution detection technology[J]. Journal of Safety and Environment,2024,24(10):3876-3888.
|
[2] |
LIU Ting,LIU Shimin. The impacts of coal dust on miners' health:a review[J]. Environmental Research,2020,190. DOI: 10.1016/j.envres.2020.109849.
|
[3] |
PALUCHAMY B,MISHRA D P,PANIGRAHI D C. Airborne respirable dust in fully mechanised underground metalliferous mine-generation,health impacts and control measures for cleaner production[J]. Journal of Cleaner Production,2021,296. DOI:10.1016/ j.jclepro.2021.126524.
|
[4] |
ZHOU Ying,ZI Teng,LANG Jianlei,et al. Impact of rural residential coal combustion on air pollution in Shandong,China[J]. Chemosphere,2020,260. DOI: 10.1016/j.chemosphere.2020.127517.
|
[5] |
WANG Bing,WU Chao,KANG Liangguo,et al. What are the new challenges,goals,and tasks of occupational health in China's Thirteenth Five-Year Plan (13th FYP) period?[J]. Journal of Occupational Health,2018,60(3):208-228. DOI: 10.1539/joh.2017-0275-RA
|
[6] |
周福宝,袁亮,程卫民,等. 矿井粉尘职业健康防护技术2013—2023年研究进展[J]. 中国安全生产科学技术,2023,19(12):5-15.
ZHOU Fubao,YUAN Liang,CHENG Weimin,et al. Research progress on occupational health protection technology of mine dust from 2013 to 2023[J]. Journal of Safety Science and Technology,2023,19(12):5-15.
|
[7] |
程卫民,周刚,陈连军,等. 我国煤矿粉尘防治理论与技术20年研究进展及展望[J]. 煤炭科学技术,2020,48(2):1-20.
CHENG Weimin,ZHOU Gang,CHEN Lianjun,et al. Research progress and prospect of dust control theory and technology in China's coal mines in the past 20 years[J]. Coal Science and Technology,2020,48(2):1-20.
|
[8] |
AMOAH N A,XU Guang,WANG Yang,et al. Application of low-cost particulate matter sensors for air quality monitoring and exposure assessment in underground mines:a review[J]. International Journal of Minerals,Metallurgy and Materials,2022,29(8):1475-1490.
|
[9] |
顾大钊,李全生. 基于井下生态保护的煤矿职业健康防护理论与技术体系[J]. 煤炭学报,2021,46(3):950-958.
GU Dazhao,LI Quansheng. Theoretical framework and key technologies of underground ecological protection based on coal mine occupational health prevention[J]. Journal of China Coal Society,2021,46(3):950-958.
|
[10] |
王杰,郑林江. 煤矿粉尘职业危害监测技术及其发展趋势[J]. 煤炭科学技术,2017,45(11):119-125.
WANG Jie,ZHENG Linjiang. Development tendency and monitoring technology of dust occupational hazard in coal mine[J]. Coal Science and Technology,2017,45(11):119-125.
|
[11] |
陈建阁,李德文,许江,等. 基于光散射法无动力粉尘质量浓度检测技术[J]. 煤炭学报,2023,48(增刊1):149-158.
CHEN Jiange,LI Dewen,XU Jiang,et al. Non dynamic dust mass concentration detection technology based on light scattering method[J]. Journal of China Coal Society,2023,48(S1):149-158.
|
[12] |
赵政,李德文,吴付祥,等. 基于光散射法和电荷感应法融合的粉尘浓度检测技术[J]. 东北大学学报(自然科学版),2021,42(1):139-146,152.
ZHAO Zheng,LI Dewen,WU Fuxiang,et al. Dust concentration detection technology based on fusion of light scattering method and charge induction method[J]. Journal of Northeastern University (Natural Science),2021,42(1):139-146,152.
|
[13] |
巫亮. 基于β射线法的大气颗粒物分级监测系统研究[J]. 环境工程,2018,36(7):170-173.
WU Liang. Research of atmospheric particulates classification monitoring system based on β-ray method[J]. Environmental Engineering,2018,36(7):170-173.
|
[14] |
陈建阁,李德文,王杰,等. 基于静电感应法的粉尘质量浓度检测装置优化[J]. 煤炭学报,2022,47(7):2668-2677.
CHEN Jiange,LI Dewen,WANG Jie,et al. Optimization of dust concentration detection device based on electrostatic induction method[J]. Journal of China Coal Society,2022,47(7):2668-2677.
|
[15] |
屠烟波. 振荡天平法粉尘测量研究[D]. 杭州:中国计量大学,2020.
TU Yanbo. Research on dust measurement by oscillatory balance method[D]. Hangzhou:China University of Metrology,2020.
|
[16] |
王杰,叶长青,赵海波. 粉尘浓度测量方法综述[J]. 科技资讯,2015,13(35):241-242.
WANG Jie,YE Changqing,ZHAO Haibo. Overview of dust concentration measurement methods[J]. Science & Technology Information,2015,13(35):241-242.
|
[17] |
杨俊哲. 神东矿区综合防尘技术及应用[J]. 煤炭科学技术,2015,43(11):54-59.
YANG Junzhe. Comprehensive dust prevention technology and application in Shendong Mining Area[J]. Coal Science and Technology,2015,43(11):54-59.
|
[18] |
魏海天,王杰,陈述斌. 基于数据融合的光散射法与β射线粉尘监测技术研究[J/OL]. 矿业安全与环保:1-7[2024-09-19]. http://kns.cnki.net/kcms/detail/50.1062.td.20240415.1651.002.html.
WEI Haitian,WANG Jie,CHEN Shubin. Research on light scattering method and β-ray dust monitoring technology based on data fusion[J/OL]. Mining Safety & Environmental Protection:1-7[2024-09-19]. http://kns.cnki.net/kcms/detail/50.1062.td.20240415.1651.002.html.
|
[19] |
李德文,卓勤源,吴付祥,等. 基于β射线法的粉尘质量浓度检测算法研究[J]. 矿业安全与环保,2019,46(6):8-13.
LI Dewen,ZHUO Qinyuan,WU Fuxiang,et al. Research on algorithm of dust concentration detection based on β-ray method[J]. Mining Safety & Environmental Protection,2019,46(6):8-13.
|
[20] |
尹江江. 基于计算机视觉的粉尘污染在线监测与评价方法研究[D]. 长沙:中南大学,2023.
YIN Jiangjiang. Research on online monitoring and evaluation method of dust pollution based on computer vision[D]. Changsha:Central South University,2023.
|
[21] |
刘东旭,李朋宾. 基于电荷感应法的粉尘浓度传感器研究[J]. 山东工业技术,2015(3):63-64.
LIU Dongxu,LI Pengbin. Research on dust concentration sensor based on charge induction method[J]. Shandong Industrial Technology,2015(3):63-64.
|
[22] |
李德文,隋金君,刘国庆,等. 中国煤矿粉尘危害防治技术现状及发展方向[J]. 矿业安全与环保,2019,46(6):1-7,13.
LI Dewen,SUI Jinjun,LIU Guoqing,et al. Technical status and development direction of coal mine dust hazard prevention and control technology in China[J]. Mining Safety & Environmental Protection,2019,46(6):1-7,13.
|
[23] |
周福宝,郑丽娜,冯子康,等. 基于振荡天平原理的矿工个体粉尘连续监测仪的研制[J]. 煤炭学报,2024,49(2):876-884.
ZHOU Fubao,ZHENG Lina,FENG Zikang,et al. Development of a miner personal dust continuous monitor based on the principle of oscillating balance[J]. Journal of China Coal Society,2024,49(2):876-884.
|
[24] |
袁亮. 煤矿粉尘防控与职业安全健康科学构想[J]. 煤炭学报,2020,45(1):1-7.
YUAN Liang. Scientific conception of coal mine dust control and occupational safety[J]. Journal of China Coal Society,2020,45(1):1-7.
|
[25] |
FIGUEROA-LARA J J,MURCIA-GONZÁLEZ J M,GARCÍA-MARTÍNEZ R,et al. Effect of platform subway depth on the presence of airborne PM2.5,metals,and toxic organic species[J]. Journal of Hazardous Materials,2019,377:427-436. DOI: 10.1016/j.jhazmat.2019.05.091
|
[26] |
LOY-BENITEZ J,HEO S,YOO C. Imputing missing indoor air quality data via variational convolutional autoencoders:implications for ventilation management of subway metro systems[J]. Building and Environment,2020,182. DOI:10.1016/j.buildenv. 2020.107135.
|
[27] |
WIDIATMOJO A,SASAKI K,SUGAI Y,et al. Assessment of air dispersion characteristic in underground mine ventilation:field measurement and numerical evaluation[J]. Process Safety and Environmental Protection,2015,93:173-181. DOI: 10.1016/j.psep.2014.04.001
|
[28] |
李彦筑,王杰,谢双. 呼吸性粉尘虚拟冲击分离器数值模拟及实验验证[J]. 矿业安全与环保,2022,49(3):20-25.
LI Yanzhu,WANG Jie,XIE Shuang. Numerical simulation and experimental verification of respirable dust virtual impact separator[J]. Mining Safety & Environmental Protection,2022,49(3):20-25.
|
[29] |
LI Yanna,FU Muqing,PANG Wei,et al. A combined virtual impactor and field-effect transistor microsystem for particulate matter separation and detection[J]. 2021,4(1). DOI: 10.1063/10.0003447.
|
[30] |
BIANCHINI A,PELLEGRINI M,ROSSI J,et al. Theoretical model and preliminary design of an innovative wet scrubber for the separation of fine particulate matter produced by biomass combustion in small size boilers[J]. Biomass and Bioenergy,2018,116:60-71. DOI: 10.1016/j.biombioe.2018.05.011
|
[31] |
原永涛,魏玉珍,张滨渭,等. 多级冲击采样器用于发电厂烟道飞灰采样的探讨[J]. 热力发电,2010,39(5):77-81.
YUAN Yongtao,WEI Yuzhen,ZHANG Binwei,et al. An approach to multi-stage impact sampler used for fly ash sampling in flue duct of power plants[J]. Thermal Power Generation,2010,39(5):77-81.
|
[32] |
于海明,程煜,程卫民,等. 虚拟冲击分离效能的多因素影响机制研究[J/OL]. 材料导报:1-16 [2024-10-14]. http://kns.cnki.net/kcms/detail/50.1078.TB.20240415.1001.002.html.
YU Haiming,CHENG Yu,CHENG Weimin,et al. Research on the multi factor influence mechanism of virtual impact separation efficiency[J/OL]. Materials Reports:1-16[2024-10-14]. http://kns.cnki.net/kcms/detail/50.1078.TB.20240415.1001.002.html.
|
[33] |
秦鹏,孔雷,杨子祥. 综掘面煤尘防治综合技术研究[J]. 煤矿现代化,2017,26(4):18-20.
QIN Peng,KONG Lei,YANG Zixiang. The comprehensive technology research on coal dust control in fully-mechanized coal mining face[J]. Coal Mine Modernization,2017,26(4):18-20.
|
[34] |
苏伟,武晶晶,于建奇,等. 旋风分离器的气相流场的性能分析及数值模拟[J]. 机械制造与自动化,2017,46(3):161-163.
SU Wei,WU Jingjing,YU Jianqi,et al. Performance analysis and numerical simulation of gas flow field in cyclone[J]. Machine Building & Automation,2017,46(3):161-163.
|
[35] |
黄鹏升. 基于响应曲面法的旋风分离器排气管优化研究[J]. 现代矿业,2021,37(8):169-173.
HUANG Pengsheng. Optimization of exhaust pipe of cyclone separator based on response surface method[J]. Modern Mining,2021,37(8):169-173.
|
[36] |
HOUNAM R F,SHERWOOD R J. The cascade centripeter:a device for determining the concentration and size distribution of aerosols[J]. American Industrial Hygiene Association Journal,1965,26(2):122-131. DOI: 10.1080/00028896509342711
|
[37] |
CONNER W D. An inertial-type particle separator for collecting large samples[J]. Journal of the Air Pollution Control Association,1966,16(1):35-38. DOI: 10.1080/00022470.1966.10468438
|
[38] |
马弢,杨屹,商洁,等. 某型虚拟冲击器的设计及数值模拟[J]. 辐射防护,2021,41(4):359-364.
MA Tao,YANG Yi,SHANG Jie,et al. Design and numerical simulation of a virtual impactor[J]. Radiation Protection,2021,41(4):359-364.
|
[39] |
OKUDA T,SHISHIDO D,TERUI Y,et al. Development of a high-volume simultaneous sampler for fine and coarse particles using virtual impactor and cyclone techniques[J]. Asian Journal of Atmospheric Environment,2018,12(1):78-86. DOI: 10.5572/ajae.2018.12.1.078
|
[40] |
蒋靖坤,邓建国,李振,等. 双级虚拟撞击采样器应用于固定污染源PM10和PM2.5排放测量[J]. 环境科学,2016,37(6):2003-2007.
JIANG Jingkun,DENG Jianguo,LI Zhen,et al. Application of a two-stage virtual impactor in measuring of PM10 and PM2.5 emissions from stationary sources[J]. Environmental Science,2016,37(6):2003-2007.
|
[41] |
惠立锋,李德文,郭永彩. 基于虚拟冲击原理的呼吸性粉尘连续分离技术[J]. 中南大学学报(自然科学版),2022,53(8):3062-3070.
HUI Lifeng,LI Dewen,GUO Yongcai. Continuous separation of respirable dust based on virtual impactor principle[J]. Journal of Central South University (Science and Technology),2022,53(8):3062-3070.
|
[42] |
谢双. 基于虚拟冲击原理的呼吸性粉尘分离技术和分离器研究[D]. 重庆:重庆科技学院,2019.
XIE Shuang. Research on respirable dust separation technology and separator based on virtual impact principle[D]. Chongqing:Chongqing University of Science & Technology,2019.
|
[43] |
LI Lin,ZHANG Ruixin,SUN Jiandong,et al. Monitoring and prediction of dust concentration in an open-pit mine using a deep-learning algorithm[J]. Journal of Environmental Health Science & Engineering,2021,19(1):401-414.
|
[44] |
赵耀忠,严俊龙,任吉凯,等. 基于机器学习的露天煤矿粉尘浓度预测[J]. 煤炭工程,2022,54(增刊1):157-161.
ZHAO Yaozhong,YAN Junlong,REN Jikai,et al. Prediction of dust concentration in open pit coal mines based on machine learning[J]. Coal Engineering,2022,54(S1):157-161.
|
[45] |
金磊,杨晓伟,张浩,等. 基于HA−RF−SHAP的露天煤矿粉尘浓度预测模型[J]. 西安科技大学学报,2024,44(1):74-83.
JIN Lei,YANG Xiaowei,ZHANG Hao,et al. Prediction model for dust concentration in open-pit coal mines based on HA-RF-SHAP[J]. Journal of Xi'an University of Science and Technology,2024,44(1):74-83.
|
[46] |
王艳,张游杰. 基于改进残差网络的扬尘图像识别方法[J]. 计算机系统应用,2021,30(5):202-207.
WANG Yan,ZHANG Youjie. Dust image recognition method based on improved residual network[J]. Computer Systems & Applications,2021,30(5):202-207.
|
[47] |
KO K K,JUNG E S. Improving air pollution prediction system through multimodal deep learning model optimization[J]. Applied Sciences,2022,12(20). DOI: 10.3390/app122010405.
|
[48] |
WANG Mingpu,YAO Gang,YANG Yang,et al. Deep learning-based object detection for visible dust and prevention measures on construction sites[J]. Developments in the Built Environment,2023,16. DOI: 10.1016/j.dibe.2023.100245.
|
[49] |
陈锋. 基于图像法的粉尘浓度检测设计与研究[D]. 杭州:中国计量大学,2019.
CHEN Feng. Design and research on dust concentration detection based on image method[D]. Hangzhou:China University of Metrology,2019.
|
[50] |
刘伟华. 基于机器视觉的煤尘在线检测系统关键技术研究[D]. 济南:山东大学,2011.
LIU Weihua. Research on key technologies of coal dust online detection system based on machine vision[D]. Jinan:Shandong University,2011.
|