Citation: | XU Jinhui, WANG Wenshan, WANG Shuang, et al. Multi-object detection for underground unmanned locomotives based on DYCS-YOLOv8n[J]. Journal of Mine Automation,2025,51(4):86-92, 130. DOI: 10.13272/j.issn.1671-251x.2024100036 |
To address the challenges in underground unmanned locomotive image feature extraction—such as poor lighting, high noise, and motion blur, which result in the loss of image details and difficulty in identifying small targets—a multi-object detection model for underground unmanned locomotives based on DYCS-YOLOv8n was proposed. Based on YOLOv8n, the Convolutional Block Attention Module (CBAM) was introduced, enhancing the extraction of key features through spatial and channel attention mechanisms. A small-object detection layer was added, increasing the original three layers to four, thereby improving the extraction of fine features and enhancing detection performance for small-sized targets. The dynamic upsampling operator DySample was employed to adaptively adjust the sampling strategy according to the input features, better preserving edges and local details in the images and avoiding the loss of critical information. Experiments conducted on a self-constructed underground unmanned locomotive dataset showed that: ① The DYCS-YOLOv8n model achieved a mean Average Precision (mAP@0.5) of 97.5%, an improvement of 3.4% over the YOLOv8n model, with a detection speed of 46.35 frames per second, meeting the requirements for real-time detection. ② Compared with mainstream YOLO series object detection models, DYCS-YOLOv8n achieved the optimal mAP@0.5, maintaining a lightweight structure while ensuring high computational speed. ③ In complex underground scenarios with noise and low illumination, the DYCS-YOLOv8n model exhibited high average detection confidence for pedestrians, tracks, and signal lights, with no cases of missed or false detections.
[1] |
崔邵云,鲍久圣,李芳威,等. 基于多源里程融合的井下无人驾驶自主导航SLAM方法[J/OL]. 煤炭科学技术:1-10[2024-10-06]. http://kns.cnki.net/kcms/detail/11.2402.td.20240925.1231.002.html.
CUI Shaoyun,BAO Jiusheng,LI Fangwei,et al. Autonomous navigation SLAM method for underground unmanned driving based on multi-source mileage fusion scenarios[J/OL]. Coal Science and Technology:1-10[2024-10-06]. http://kns.cnki.net/kcms/detail/11.2402.td.20240925.1231.002.html.
|
[2] |
杨豚,郭永存,王爽,等. 煤矿井下无人驾驶轨道电机车障碍物识别[J]. 浙江大学学报(工学版),2024,58(1):29-39.
YANG Tun,GUO Yongcun,WANG Shuang,et al. Obstacle recognition of unmanned rail electric locomotive in underground coal mine[J]. Journal of Zhejiang University (Engineering Science),2024,58(1):29-39.
|
[3] |
陈相蒙,王恩标,王刚. 煤矿电机车无人驾驶技术研究[J]. 煤炭科学技术,2020,48(增刊2):159-164.
CHEN Xiangmeng,WANG Enbiao,WANG Gang. Research on electric locomotive self-driving technology in coal mine[J]. Coal Science and Technology,2020,48(S2):159-164.
|
[4] |
韩江洪,卫星,陆阳,等. 煤矿井下机车无人驾驶系统关键技术[J]. 煤炭学报,2020,45(6):2104-2115.
HAN Jianghong,WEI Xing,LU Yang,et al. Driverless technology of underground locomotive in coal mine[J]. Journal of China Coal Society,2020,45(6):2104-2115.
|
[5] |
葛世荣. 煤矿机器人现状及发展方向[J]. 中国煤炭,2019,45(7):18-27. DOI: 10.3969/j.issn.1006-530X.2019.07.004
GE Shirong. Present situation and development direction of coal mine robots[J]. China Coal,2019,45(7):18-27. DOI: 10.3969/j.issn.1006-530X.2019.07.004
|
[6] |
肖雨晴,杨慧敏. 目标检测算法在交通场景中应用综述[J]. 计算机工程与应用,2021,57(6):30-41. DOI: 10.3778/j.issn.1002-8331.2011-0361
XIAO Yuqing,YANG Huimin. Research on application of object detection algorithm in traffic scene[J]. Computer Engineering and Applications,2021,57(6):30-41. DOI: 10.3778/j.issn.1002-8331.2011-0361
|
[7] |
REN Shaoqing,HE Kaiming,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. DOI: 10.1109/TPAMI.2016.2577031
|
[8] |
GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition,Columbus,2014:580-587.
|
[9] |
HE Kaiming,GKIOXARI G,DOLLÁR P,et al. Mask R-CNN[C]. IEEE International Conference on Computer Vision,Venice,2017:2980-2988.
|
[10] |
LIU Wei,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[C]. European Conference on Computer Vision,Cham,2016:21-37.
|
[11] |
REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]. IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:6517-6525.
|
[12] |
REDMON J,FARHADI A. YOLOv3:an incremental improvement[EB/OL]. [2024-10-06]. https://arxiv.org/abs/1804.02767v1.
|
[13] |
曹帅,董立红,邓凡,等. 基于YOLOv7−SE的煤矿井下场景小目标检测方法[J]. 工矿自动化,2024,50(3):35-41.
CAO Shuai,DONG Lihong,DENG Fan,et al. A small object detection method for coal mine underground scene based on YOLOv7-SE[J]. Journal of Mine Automation,2024,50(3):35-41.
|
[14] |
张传伟,张天乐,周李兵,等. 基于GCDB−YOLOv8的矿用无人车井下运输巷道工作人员检测方法[J/OL]. 煤炭学报:1-16[2025-04-15]. https://doi. org/10.13225/j. cnki. jccs. 2024.1298.
ZHANG Chuanwei,ZHANG Tianle,ZHOU Libing,et al. Detection method of mining unmanned vehicles underground transportation roadway workers based on GCDB-YOLOv8[J/OL]. Journal of China Coal Society:1-16[2025-04-15]. https://doi.org/10.13225/j.cnki.jccs.2024.1298.
|
[15] |
郑嘉祺. 基于DCNN的井下行人检测系统的研究与设计[D]. 西安:西安科技大学,2017.
ZHENG Jiaqi. Research and design of underground pedestrian detection system based on DCNN[D]. Xi'an:Xi'an University of Science and Technology,2017.
|
[16] |
李忠飞,冯仕咏,郭骏,等. 融合坐标注意力与多尺度特征的轻量级安全帽佩戴检测[J]. 工矿自动化,2023,49(11):151-159.
LI Zhongfei,FENG Shiyong,GUO Jun,et al. Lightweight safety helmet wearing detection fusing coordinate attention and multiscale feature[J]. Journal of Mine Automation,2023,49(11):151-159.
|
[17] |
陈伟,江志成,田子建,等. 基于YOLOv8的煤矿井下人员不安全动作检测算法[J]. 煤炭科学技术,2024,52(增刊2):267-283.
CHEN Wei,JIANG Zhicheng,TIAN Zijian,et al. Unsafe action detection algorithm of underground personnel in coal mine based on YOLOv8[J]. Coal Science and Technology,2024,52(S2):267-283.
|
[18] |
WANG Wenshan,WANG Shuang,GUO Yongcun,et al. Obstacle detection method of unmanned electric locomotive in coal mine based on YOLOv3-4L[J]. Journal of Electronic Imaging,2022,31(2). DOI: 10.1117/1.JEI.31.2.023032.
|
[19] |
张楠楠,张晓,白铁成,等. 基于CBAM−YOLO v7的自然环境下棉叶病虫害识别方法[J]. 农业机械学报,2023,54(增刊1):239-244.
ZHANG Nannan,ZHANG Xiao,BAI Tiecheng,et al. Identification method of cotton leaf pests and diseases in natural environment based on CBAM-YOLO v7[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(S1):239-244.
|
[20] |
李淇,石艳,范桃. 改进YOLOv8n的O型密封圈表面缺陷检测算法研究[J]. 计算机工程与应用,2024,60(18):126-135. DOI: 10.3778/j.issn.1002-8331.2405-0099
LI Qi,SHI Yan,FAN Tao. Research on O-ring surface defect detection algorithm based on improved YOLOv8n[J]. Computer Engineering and Applications,2024,60(18):126-135. DOI: 10.3778/j.issn.1002-8331.2405-0099
|
[21] |
袁媛,白一超,周利东,等. 改进YOLOv8的输送带损伤检测方法[J/OL]. 中国机械工程:1-14[2025-04-22]. http://kns.cnki.net/kcms/detail/42.1294.th.20250421.1402.008.html.
YUAN Yuan,BAI Yichao,ZHOU Lidong,et al. Conveyor belt damage detection based on improved YOLOv8[J/OL]. China Mechanical Engineering:1-14[2025-04-22]. http://kns.cnki.net/kcms/detail/42.1294.th.20250421.1402.008.html.
|
[22] |
HU Jie,SHEN Li,SUN Gang. Squeeze-and-excitation networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:7132-7141.
|
[23] |
TOUVRON H,CORD M,SABLAYROLLES A,et al. Going deeper with image transformers[C]. IEEE/CVF International Conference on Computer Vision,Montreal,2021:32-42.
|
[24] |
OUYANG Daliang,HE Su,ZHANG Guozhong,et al. Efficient multi-scale attention module with cross-spatial learning[C]. IEEE International Conference on Acoustics,Speech and Signal Processing,Rhodes Island,2023:1-5.
|
[25] |
PANDYA R V R. Generalized attention mechanism and relative position for transformer[EB/OL]. [2024-10-06]. https://arxiv.org/abs/2208.10247v1.
|
[1] | MAO Qinghua, YANG Fan, WANG Chao, TONG Xuyao, TONG Junwei, ZHANG Xuhui, XUE Xusheng. Mine hoisting steel wire rope surface damage image recognition based on improved YOLOv8n[J]. Journal of Mine Automation, 2025, 51(4): 100-106, 152. DOI: 10.13272/j.issn.1671-251x.2024120025 |
[2] | ZHU Yongjun, CAI Guangqi, HAN Jin, MIAO Yanzi, MA Xiaoping, JIAO Wenhua. Small object detection in complex open-pit mine backgrounds based on improved YOLOv11[J]. Journal of Mine Automation, 2025, 51(4): 93-99. DOI: 10.13272/j.issn.1671-251x.2025020018 |
[3] | WEN Yongzhong, JIA Pengtao, XIA Mingao, ZHANG Longgang, WANG Weifeng. Multi-target detection of underground personnel based on an improved YOLOv8n model[J]. Journal of Mine Automation, 2025, 51(1): 31-37, 77. DOI: 10.13272/j.issn.1671-251x.2024110035 |
[4] | WANG Qi, XIA Lufei, CHEN Tianming, HAN Hongyin, WANG Liang. Detection of underground personnel safety helmet wearing based on improved YOLOv8n[J]. Journal of Mine Automation, 2024, 50(9): 124-129. DOI: 10.13272/j.issn.1671-251x.2024040054 |
[5] | XUE Xiaoyong, HE Xinyu, YAO Chaoxiu, JIANG Ze, PAN Hongguang. Small object detection method for mining face based on improved YOLOv8n[J]. Journal of Mine Automation, 2024, 50(8): 105-111. DOI: 10.13272/j.issn.1671-251x.2024060013 |
[6] | CHEN Tengjie, LI Yong'an, ZHANG Zhihao, LIN Bin. Foreign object detection and counting method for belt conveyor based on improved YOLOv8n+DeepSORT[J]. Journal of Mine Automation, 2024, 50(8): 91-98. DOI: 10.13272/j.issn.1671-251x.2024070043 |
[7] | CAO Shuai, DONG Lihong, DENG Fan, GAO Feng. A small object detection method for coal mine underground scene based on YOLOv7-SE[J]. Journal of Mine Automation, 2024, 50(3): 35-41. DOI: 10.13272/j.issn.1671-251x.2023090088 |
[8] | LIU Yi, PANG Dawei, TIAN Yu. Multi object personnel detection and dynamic tracking method based on improved KCF[J]. Journal of Mine Automation, 2023, 49(11): 129-137. DOI: 10.13272/j.issn.1671-251x.2023080015 |
[9] | ZHAO Wei, WANG Shuang, ZHAO Dongyang. Multi object detection of underground unmanned electric locomotives in coal mines based on SD-YOLOv5s-4L[J]. Journal of Mine Automation, 2023, 49(11): 121-128. DOI: 10.13272/j.issn.1671-251x.2023070100 |
[10] | MA Qiu-huan, XU Wen-shang, TENG Jing-zhong, DUAN Feng. Application of Siemens PLC in Dynamic Monitoring and Control System of Cableway[J]. Journal of Mine Automation, 2010, 36(4): 127-129. |