Citation: | LYU Huilin, DONG Jiayao, YUAN Lin, et al. Entity extraction integrating lexical information for coal mine safety accidents[J]. Journal of Mine Automation,2025,51(4):131-139. DOI: 10.13272/j.issn.1671-251x.2024090039 |
Named Entity Recognition (NER) serves as a foundational task in constructing knowledge graphs for coal mine safety accidents, yet the absence of explicit lexical boundaries in Chinese text has constrained the effective utilization of lexical information by existing entity extraction models. To address this challenge, a RoBERTa-BiLSTM-CRF model integrated with lexical information was proposed for entity extraction in coal mine safety accidents. Initially, a domain-specific lexicon for coal mine safety was constructed, where character-level feature vectors were obtained via RoBERTa, and potential lexical units corresponding to characters were identified through the Aho-Corasick (AC) Automation. Subsequently, lexical feature vectors were derived using GloVe embeddings. These vectors were then fused via a self-attention mechanism, which dynamically allocated weights to integrate RoBERTa-based character features and GloVe-based lexical features, yielding a composite vector enriched with lexical semantics. Finally, the fused vector was fed into a BiLSTM-CRF framework to generate optimized prediction sequences, thereby achieving accurate entity extraction in coal mine safety accidents. Experimental results demonstrated that: (1) the proposed model achieved an F1-score of 91.63%, which was 1.63 % higher than that of the RoBERTa-BiLSTM-CRF model. (2) It outperformed comparative models in both overall entity extraction tasks and across various entity categories, indicating the broad applicability of its design to diverse entity types.
[1] |
国家能源局. 煤矿智能化标准体系建设指南 [EB/OL]. (2024-03-13)[2024-08-13]. https://zfxxgk.nea.gov.cn/2024-03/13/c_1310768359.htm.
National Energy Administration. Guide for building the intelligent standard system of coal mine[EB/OL]. [EB/OL]. (2024-03-13)[2024-08-13]. https://zfxxgk.nea.gov.cn/2024-03/13/c_1310768359.htm.
|
[2] |
郭梨,高元,吴昊,等. 基于混合因果逻辑的尾矿坝事故知识图谱构建与应用[J]. 金属矿山,2025(1):233-242.
GUO Li,GAO Yuan,WU Hao,et al. Construction and application of tailings dam accident knowledge graph based on hybrid causal logic[J]. Metal Mine,2025(1):233-242.
|
[3] |
JI Shaoxiong,PAN Shirui,CAMBRIA E,et al. A survey on knowledge graphs:representation,acquisition,and applications[J]. IEEE Transactions on Neural Networks and Learning Systems,2022,33(2):494-514. DOI: 10.1109/TNNLS.2021.3070843
|
[4] |
RAU L F. Extracting company names from text[C]. The Seventh IEEE Conference on Artificial Intelligence Application,Miami Beach,1991:29-32.
|
[5] |
GRISHMAN R,SUNDHEIM B. Message understanding conference-6:a brief history[C]. 16th Conference on Computational Linguistics,Copenhagen,1996:466-471.
|
[6] |
任乐,张仰森,刘帅康. 基于深度学习的实体关系抽取研究综述[J]. 北京信息科技大学学报(自然科学版),2023,38(6):70-79,87.
REN Le,ZHANG Yangsen,LIU Shuaikang. Review of research on entity relation extraction based on deep learning[J]. Journal of Beijing Information Science & Technology University(Science and Technology Edition),2023,38(6):70-79,87.
|
[7] |
HUANG Zhiheng,XU Wei,YU Kai. Bidirectional LSTM-CRF models for sequence tagging[J]. Computer Science,2015. DOI: 10.48550/arXiv.1508.01991.
|
[8] |
曹卫东,徐秀丽. 基于R−BERT−CNN模型的实体关系抽取[J]. 计算机应用与软件,2023,40(4):222-229. DOI: 10.3969/j.issn.1000-386x.2023.04.036
CAO Weidong,XU Xiuli. Entity relationship extraction based on R-BERT-CNN[J]. Computer Applications and Software,2023,40(4):222-229. DOI: 10.3969/j.issn.1000-386x.2023.04.036
|
[9] |
肖丹,杨春明,张晖,等. 基于多头注意力的中文电子病历命名实体识别[J]. 计算机应用与软件,2024,41(1):133-138,160. DOI: 10.3969/j.issn.1000-386x.2024.01.020
XIAO Dan,YANG Chunming,ZHANG Hui,et al. Named entity recognition based on Multi-Head Attention in Chinese electronic medical records[J]. Computer Applications and Software,2024,41(1):133-138,160. DOI: 10.3969/j.issn.1000-386x.2024.01.020
|
[10] |
潘理虎,赵彭彭,龚大立,等. 煤矿事故案例命名实体识别方法研究[J]. 计算机技术与发展,2022,32(2):154-160. DOI: 10.3969/j.issn.1673-629X.2022.02.025
PAN Lihu,ZHAO Pengpeng,GONG Dali,et al. Combined ALBERT for named entity recognition in coal mine accident cases[J]. Computer Technology and Development,2022,32(2):154-160. DOI: 10.3969/j.issn.1673-629X.2022.02.025
|
[11] |
王向前,李敏敏,孟祥瑞. 基于ALBERT−BiLSTM− CRF的煤矿事故案例文本命名实体识别方法[J]. 阜阳师范大学学报(自然科学版),2022,39(3):56-64.
WANG Xiangqian,LI Minmin,MENG Xiangrui. Named entity recognition method of coal mine accident case text based on ALBERT-BiLSTM-CRF[J]. Journal of Fuyang Normal University(Natural Science),2022,39(3):56-64.
|
[12] |
曹现刚,吴可昕,张梦园,等. 基于BERT的煤矿装备维护知识命名实体识别研究[J]. 机床与液压,2023,51(9):103-108. DOI: 10.3969/j.issn.1001-3881.2023.09.017
CAO Xiangang,WU Kexin,ZHANG Mengyuan,et al. Coal mine equipment maintenance knowledge named entity recognition model based on BERT[J]. Machine Tool & Hydraulics,2023,51(9):103-108. DOI: 10.3969/j.issn.1001-3881.2023.09.017
|
[13] |
刘飞翔,李泽荃,赵嘉良,等. 基于ERNIE−BiGRU−CRF模型的煤矿安全隐患命名实体智能识别研究[J]. 煤炭工程,2024,56(2):206-212.
LIU Feixiang,LI Zequan,ZHAO Jialiang,et al. Intelligent recognition of named entities of coal mine safety hidden danger based on ERNIE-BiGRU-CRF model[J]. Coal Engineering,2024,56(2):206-212.
|
[14] |
夏江镧,李艳玲,葛凤培. 基于大语言模型的实体关系抽取综述[J/OL]. 计算机科学与探索:1-23[2024-07-22]. http://kns.cnki.net/kcms/detail/11.5602.TP.20250219.1506.010.html.
XIA Jianglan,LI Yanling,GE Fengpei. A survey of entity relation extraction based on large language models[J/OL]. Journal of Frontiers of Computer Science and Technology:1-23[2024-07-22]. http://kns.cnki.net/kcms/detail/11.5602.TP.20250219.1506.010.html.
|
[15] |
MA Shengkun,HAN Jiale,LIANG Yi,et al. Making pre-trained language models better continual few-shot relation extractors[C]. Joint International Conference on Computational Linguistics,Language Resources and Evaluation,Torino,2024:10970-10983.
|
[16] |
MIAO Xin,LI Yongqi,ZHOU Shen,et al. Episodic memory retrieval from LLMs:a neuromorphic mechanism to generate commonsense counterfactuals for relation extraction[C]. Findings of the Association for Computational Linguistics,Bangkok,2024:2489-2511.
|
[17] |
LUO Da,GAN Yanglei,HOU Rui,et al. Synergistic anchored contrastive pre-training for few-shot relation extraction[C]. The 38th AAAI Conference on Artificial Intelligence,Vancouver,2024:18742-18750.
|
[18] |
XU Xiaolong,LI Chenbin,XIANG Haolong,et al. Attention based document-level relation extraction with none class ranking loss[C]. The 33th International Joint Conference on Artificial Intelligence,Jeju,2024:6569-6577.
|
[19] |
LI Guozheng,KE Wenjun,WANG Peng,et al. Unlocking instructive in-context learning with tabular prompting for relational triple extraction[C]. Joint International Conference on Computational Linguistics,Language Resources and Evaluation,Torino,2024:17131-17143.
|
[20] |
刘婷,潘理虎,张素兰,等. 基于形式概念分析的采煤工作面本体构建研究[J]. 工矿自动化,2017,43(1):73-76.
LIU Ting,PAN Lihu,ZHANG Sulan,et al. Research of ontology construction of coal mining face based on formal concept analysis[J]. Industry and Mine Automation,2017,43(1):73-76.
|
[21] |
STENETORP P,PYYSALO S,TOPIC G,et al. BRAT:a web-based tool for NLP-assisted text annotation[C]. The 13th Conference of the European Chapter of the Association for Computational Linguistics,Avignon,2012:102-107.
|
[22] |
姜海洋,李雪菲,杨晔. 基于距离比较的AC自动机并行匹配算法[J]. 电子与信息学报,2022,44(2):581-590. DOI: 10.11999/JEIT210009
JIANG Haiyang,LI Xuefei,YANG Ye. Distance comparison based parallel pattern matching[J]. Journal of Electronics & Information Technology,2022,44(2):581-590. DOI: 10.11999/JEIT210009
|
[23] |
赵鹏飞,赵春江,吴华瑞,等. 基于BERT的多特征融合农业命名实体识别[J]. 农业工程学报,2022,38(3):112-118. DOI: 10.11975/j.issn.1002-6819.2022.03.013
ZHAO Pengfei,ZHAO Chunjiang,WU Huarui,et al. Recognition of the agricultural named entities with multi-feature fusion based on BERT[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(3):112-118. DOI: 10.11975/j.issn.1002-6819.2022.03.013
|
[24] |
周燕. 基于GloVe模型和注意力机制Bi−LSTM的文本分类方法[J]. 电子测量技术,2022,45(7):42-47.
ZHOU Yan. Text classification method based on GloVe model and attention mechanism Bi-LSTM[J]. Electronic Measurement Technology,2022,45(7):42-47.
|
[25] |
DEVLIN J,CHANG Mingwei,LEE K,et al. BERT:pretraining of deep bidirectional transformers for language understanding[C]. Conference of the North American Chapter of the Association for Computational Linguistics,Minneapolis,2019. DOI: 10.48550/arXiv.1810.04805.
|
[26] |
李静宜,丁飞,张楠,等. 基于深度LSTM与遗传算法融合的短期交通流预测模型[J]. 无线电通信技术,2022,48(5):836-843. DOI: 10.3969/j.issn.1003-3114.2022.05.009
LI Jingyi,DING Fei,ZHANG Nan,et al. Short-term traffic flow prediction model base on fusion of depth LSTM and genetic algorithm[J]. Radio Communications Technology,2022,48(5):836-843. DOI: 10.3969/j.issn.1003-3114.2022.05.009
|
[1] | YANG Yang, LI Haixiong, HU Miaolong, GUO Xiucai, ZHANG Huipeng. Coal and gangue segmentation and recognition method based on YOLOv5-SEDC model[J]. Journal of Mine Automation, 2024, 50(8): 120-126. DOI: 10.13272/j.issn.1671-251x.2024010078 |
[2] | HAO Qinxia, LI Huimin. Recognition model of IIoT equipment in coal mine[J]. Journal of Mine Automation, 2024, 50(3): 99-107. DOI: 10.13272/j.issn.1671-251x.2023100092 |
[3] | HE Kai, CHENG Gang, WANG Xi, GE Qingnan, ZHANG Hui, ZHAO Dongyang. Research on coal gangue recognition method based on CED-YOLOv5s model[J]. Journal of Mine Automation, 2024, 50(2): 49-56, 82. DOI: 10.13272/j.issn.1671-251x.2023090065 |
[4] | FU Yan, LIU Zhihao, YE Ou. A method for constructing a knowledge graph of unsafe behaviors in coal mines[J]. Journal of Mine Automation, 2024, 50(1): 88-95. DOI: 10.13272/j.issn.1671-251x.2023060014 |
[5] | ZHENG Daoneng. An improved tiny YOLO v3 rapid recognition model for coal-gangue[J]. Journal of Mine Automation, 2023, 49(4): 113-119. DOI: 10.13272/j.issn.1671-251x.18079 |
[6] | LI Shanhua, XIAO Tao, LI Xiaoli, YANG Fazhan, YAO Yong, ZHAO Peipei. Miner action recognition model based on DRCA-GCN[J]. Journal of Mine Automation, 2023, 49(4): 99-105, 112. DOI: 10.13272/j.issn.1671-251x.2022120023 |
[7] | YIN Yuxi, ZHOU Changfei, XU Zhipeng, SHI Chunxiang, HU Wenyuan. Research on coal and rock recognition model based on improved 1DCNN[J]. Journal of Mine Automation, 2023, 49(1): 116-122. DOI: 10.13272/j.issn.1671-251x.2022080051 |
[8] | ZHANG Nan, XIE Guojun, YE Qing, ZHAO Xiaohu. Automatic semantic annotation method for mine Semantic Web of things[J]. Journal of Mine Automation, 2020, 46(3): 27-33. DOI: 10.13272/j.issn.1671-251x.17512 |
[9] | YAO Huiting, CHEN Lichao, PAN Lihu. Research of ontology model of heading face[J]. Journal of Mine Automation, 2015, 41(9): 93-96. DOI: 10.13272/j.issn.1671-251x.2015.09.025 |
[10] | SONG Jing-ping, SONG Ye, ZHANG Shuo. Design of Distributed System of Rapid Input for Name and Address[J]. Journal of Mine Automation, 2009, 35(11): 131-134. |
1. |
赵勇智,吴锁,柏新茹,彭顺. 基于NSGAⅡ的车辆多目标轨迹优化研究. 黑龙江科学. 2025(04): 47-51 .
![]() | |
2. |
马帅. 基于露天煤矿的智能无人驾驶技术应用与研究. 建筑机械. 2025(03): 25-29 .
![]() | |
3. |
郑明芽,郑晓东,王薇薇,阙忠灏,陶海豹,彭倩. 基于探索性数据分析的电动矿卡动力电池故障影响因素研究. 煤矿机电. 2025(01): 91-95 .
![]() | |
4. |
顾清华,王雪晴,王丹,张朋朋,王宇. 考虑设备突发故障的露天矿无人矿卡集群调度优化. 矿业科学学报. 2025(02): 305-315 .
![]() | |
5. |
王威淳,郜普浩,白水. 露天矿山重型卡车总成件拆装机器人研究. 机械工程与自动化. 2024(01): 116-117 .
![]() | |
6. |
顾清华,李佳威,陈露,祝河杰. 基于固态激光雷达的露天矿非结构化运输道路小尺寸落石检测方法. 激光与光电子学进展. 2024(08): 229-234 .
![]() | |
7. |
柳昆鹏. 新疆兴盛露天矿智能化场景生态建设实践. 露天采矿技术. 2024(02): 93-97 .
![]() | |
8. |
梁明智,柳昆鹏. 基于5G网络的无人驾驶运输技术在兴盛露天煤矿的应用. 露天采矿技术. 2024(03): 32-36 .
![]() | |
9. |
张臻,董鹏朝,豆龙江,高义,张玉松,王奕铮. 基于小波包-1.5维Teager能量谱图和深度学习的滚动轴承故障诊断方法研究. 科技与创新. 2024(12): 10-15 .
![]() | |
10. |
王忠鑫,田会,王东,田凤亮,宋波,赵明,辛凤阳,陈洪亮,王金金,苏振宁,曾祥玉. 露天采矿科学目标的演变与未来发展趋势. 煤炭学报. 2024(S1): 129-153 .
![]() | |
11. |
黎一冰,韩文成,王仁福,卿启林,车长路. 露天矿山5G全连接智能采矿无线网络设计及应用. 中国矿业. 2024(S2): 127-132 .
![]() | |
12. |
栾博钰,周伟,代伟,敖忠晨,陆翔. 露天矿无人卡车与有人设备安全协调作业策略. 采矿与安全工程学报. 2024(06): 1289-1298 .
![]() | |
13. |
田凤亮. 基于司机行为的露天矿道路状况在线评估技术研究. 有色设备. 2024(06): 58-62+68 .
![]() | |
14. |
张吉苗,宋仁忠,侯星野,佘长超,于晓波,马文平,梁皓月. 110 t氢能源矿用自卸车轴箱结构性能分析及优化. 工矿自动化. 2024(S2): 284-287 .
![]() | |
15. |
佘长超,张吉苗,侯星野,卢燃,杨彦泓. 一种电动轮矿用自卸车轻量化车架设计. 工矿自动化. 2024(S2): 281-283+287 .
![]() | |
16. |
文家燕,闻海潮,程洋,罗绍猛,何伟朝. 基于GWO-NSGA-Ⅱ混合算法的露天矿低碳运输调度. 工矿自动化. 2023(02): 94-101 .
![]() | |
17. |
马宁,胡亚平. 无人驾驶车辆巷道十字交叉点智能决策系统研究. 矿业研究与开发. 2023(03): 179-184 .
![]() | |
18. |
李标. 带式输送机多电动机驱动系统转速同步控制方法. 工矿自动化. 2023(05): 112-119 .
![]() | |
19. |
徐静,李敬兆,石晴,袁浩然,赵天瑞,李小朋. 基于MA-DBNN的带式输送机健康监测系统. 机械工程与自动化. 2023(03): 4-6 .
![]() | |
20. |
刘捷欣,郭心灵. 换电新能源卡车在吉郎德露天煤矿的应用. 陕西煤炭. 2023(03): 186-189 .
![]() | |
21. |
于海里,孙立超,左胜,陈大伟,曾祥玉,杜垣江. 基于双激光雷达的带式输送机煤流量检测系统. 工矿自动化. 2023(07): 27-34+59 .
![]() | |
22. |
武熙,李珂,孟庆灵,赵佳伟. 矿用带式输送机头部智能清扫器研究与设计. 金属矿山. 2023(08): 253-259 .
![]() | |
23. |
李旭涛,刘志明,张幼振,薛建勇,张世明,张宁. 我国露天煤矿开采工艺及装备研究现状与发展趋势. 露天采矿技术. 2023(05): 6-9+13 .
![]() | |
24. |
王妍,白洪亮,蒋方正,张英伟. 露天矿无人驾驶运输关键技术研究. 现代矿业. 2023(10): 178-181 .
![]() | |
25. |
穆俊杰,田振华,彭倩,杨晨瀚. 基于行驶工况测试的电动矿卡电动机工作效率研究. 煤矿机电. 2023(04): 44-48 .
![]() | |
26. |
路向阳,蔡建业,蓝德劭,尹超. 露天矿山运输无人驾驶作业系统研究与发展述评. 控制与信息技术. 2022(05): 1-8 .
![]() | |
27. |
丁亮亮,王荣林,张东,高大林,张义杰. 白象山选厂自动化技术产线升级方案及应用研究. 现代矿业. 2022(11): 220-223+258 .
![]() | |
28. |
王国法,富佳兴,孟令宇. 煤矿智能化创新团队建设与关键技术研发进展. 工矿自动化. 2022(12): 1-15 .
![]() | |
29. |
周志宇,何成昭,朱文龙. 基于状态修的矿用电动轮自卸车电驱系统智能运维方案. 控制与信息技术. 2022(05): 130-136 .
![]() |