Citation: | SHI Can, TAN Ziliang, LEI Chao, et al. Optimization of shotcrete manipulator motion trajectory based on AIWCPSO algorithm[J]. Journal of Mine Automation,2024,50(12):155-165. DOI: 10.13272/j.issn.1671-251x.2024080094 |
To address issues in traditional shotcrete manipulator trajectory planning algorithms, such as abrupt transitions between multiple path segments and low shotcrete efficiency and uniformity caused by frequent starts and stops, an optimized motion trajectory method based on the adaptive inertia weight and acceleration coefficient particle swarm optimization (AIWCPSO) algorithm was proposed. An improved multi-segment trajectory planning algorithm was developed, which incorporated a transition strategy combining linear and arc trajectories. Vertical linear motion was replaced with arc motion. Additionally, a sinusoidal acceleration and deceleration start-stop algorithm was used to plan the trajectory of the end effector of the manipulator at start and stop points to prevent abrupt changes in acceleration. The middle segment of linear and arc trajectories was planned for uniform motion, ensuring smooth and uniform movement at the end effector of the manipulator. Using the AIWCPSO algorithm, motion parameters were optimized under kinematic constraints to achieve the optimal shotcrete time and speed, thereby improving the efficiency and uniformity of the shotcrete manipulator. Experimental results showed that, compared with traditional trajectory planning algorithms, the improved multi-segment trajectory planning algorithm increased average shotcrete efficiency by 25.42% and significantly improved the uniformity of shotcrete trajectory. After optimization with the AIWCPSO algorithm, shotcrete efficiency increased by 1.330 8%.
[1] |
贾建龙,王志鹏,赵耀斌,等. 智能化矿用喷浆机器人研究及应用[J]. 中国煤炭,2024,50(7):91-96.
JIA Jianlong,WANG Zhipeng,ZHAO Yaobin,et al. Research and application of intelligent mining spraying robot[J]. China Coal,2024,50(7):91-96.
|
[2] |
聂海男,邓立营. 基于ADAMS的喷浆液压机械臂动力学仿真分析[J]. 机电工程技术,2024,53(8):211-214. DOI: 10.3969/j.issn.1009-9492.2024.08.045
NIE Hainan,DENG Liying. Dynamics simulation analysis of shotcrete hydraulic manipulator based on ADAMS[J]. Mechanical & Electrical Engineering Technology,2024,53(8):211-214. DOI: 10.3969/j.issn.1009-9492.2024.08.045
|
[3] |
SUN Zhenjiao,CHEN Lianjun,YU Xin,et al. Study on optimization of shotcrete loading technology and the diffusion law of intermittent dust generation[J]. Journal of Cleaner Production,2021,312. DOI: 10.1016/j.jclepro.2021.127765.
|
[4] |
李浩天. 矿井巷道喷浆机械手壁面感知技术研究[D]. 徐州:中国矿业大学,2022.
LI Haotian. Research on wall sensing technology of slurry spraying robot in mine roadway[D]. Xuzhou:China University of Mining and Technology,2022.
|
[5] |
JIA Lianhui,LIU Shenyao,CAO Chenxu,et al. Kinematics and spatial structure analysis of TBM gunite robot based on D-H parameter method[J]. Scientific Reports,2024,14(1). DOI: 10.1038/s41598-024-64439-0.
|
[6] |
徐海乔. 巷道喷浆机械手轨迹规划与自动控制研究[D]. 徐州:中国矿业大学,2019.
XU Haiqiao. Research on trajectory planning and automatic control of roadway slurry spraying robot[D]. Xuzhou:China University of Mining and Technology,2019.
|
[7] |
孙宪超. 湿喷机械臂自动化作业策略与轨迹规划研究[D]. 哈尔滨:哈尔滨工业大学,2021.
SUN Xianchao. Research on automation operation strategy and trajectory planning of wet-shotcrete manipulator[D]. Harbin:Harbin Institute of Technology,2021.
|
[8] |
郭玉. 八自由度隧道喷浆机械臂的运动学及喷浆轨迹规划研究[D]. 秦皇岛:燕山大学,2021.
GUO Yu. Research on the kinematics and shotcrete trajectory planning of an eight-degree-of-freedom tunnel spraying robotic arm[D]. Qinhuangdao:Yanshan University,2021.
|
[9] |
宋迪. 一种八自由度的隧道自动喷浆机器人[D]. 长沙:中南大学,2019.
SONG Di. A tunnel automatic shotcreting robot with eight degrees of freedom[D]. Changsha:Central South University,2019.
|
[10] |
AUEN A K,LYNGROTH T S. Modelling,identification and control of a 5-DOF shotcrete robot:development of a framework for automatic application of shotcrete for AMV 4200H[D]. Arendal,Grimstad and Kristiansan:University of Agder,2019.
|
[11] |
许哲,朱海洋,王庆诚. 基于S型速度曲线的机器人连续多轨迹规划[J]. 机械设计与研究,2021,37(6):59-65.
XU Zhe,ZHU Haiyang,WANG Qingcheng. Continuous multipath trajectory planning of robot based on S-curve velocity[J]. Machine Design & Research,2021,37(6):59-65.
|
[12] |
ZHAO Lide,XIAO Qian,CHEN Hao,et al. Research on trajectory planning method of the collaborative manipulator[C]. 5th International Conference on Information Science,Electrical,and Automation Engineering,Wuhan,2023:24-26.
|
[13] |
MISTRY K,ZHANG Li,NEOH S C,et al. A micro-GA embedded PSO feature selection approach to intelligent facial emotion recognition[J]. IEEE Transactions on Cybernetics,2017,47(6):1496-1509. DOI: 10.1109/TCYB.2016.2549639
|
[14] |
WANG Mingming,LUO Jianjun,YUAN Jianping,et al. Coordinated trajectory planning of dual-arm space robot using constrained particle swarm optimization[J]. Acta Astronautica,2018,146:259-272. DOI: 10.1016/j.actaastro.2018.03.012
|
[15] |
EKREM Ö,AKSOY B. Trajectory planning for a 6-axis robotic arm with particle swarm optimization algorithm[J]. Engineering Applications of Artificial Intelligence,2023,122. DOI: 10.1016/j.engappai.2023.106099.
|
[16] |
LIANG Bingqin,LIN Xinzhang,LIU Ganghui,et al. Trajectory analysis and optimization of sea buckthorn fruit vibration separation manipulator based on I-PSO algorithm[J]. Scientific Reports,2023,13(1). DOI: 10.1038/s41598-023-47001-2.
|
[17] |
LI T H S,KUO Pinghuan,HO Y F,et al. Intelligent control strategy for robotic arm by using adaptive inertia weight and acceleration coefficients particle swarm optimization[J]. IEEE Access,2019,7:126929-126940. DOI: 10.1109/ACCESS.2019.2939050
|
[18] |
何磊. 六自由度喷浆机械臂的轨迹规划与跟踪控制研究[D]. 长沙:中南大学,2023.
HE Lei. Research on trajectory planning and tracking control of six-degree-of-freedom slurry spraying robotic arm[D]. Changsha:Central South University,2023.
|
[19] |
GB 50086—2015 岩土锚杆与喷射混凝土支护工程技术规范[S].
GB 50086—2015 Technical code for engineering of ground anchoring and shotcrete support[S].
|
[20] |
陈伟华,张铁. 六自由度喷涂机器人插补算法的研究[J]. 微计算机信息,2009,25(8):251-252,263.
CHEN Weihua,ZHANG Tie. The study of 6-DOF painting robot's interpolation algorithm[J]. Microcomputer Information,2009,25(8):251-252,263.
|
[21] |
林威,江五讲. 工业机器人笛卡尔空间轨迹规划[J]. 机械工程与自动化,2014(5):141-143. DOI: 10.3969/j.issn.1672-6413.2014.05.058
LIN Wei,JIANG Wujiang. Trajectory planning of industrial robot in Cartesian space[J]. Mechanical Engineering & Automation,2014(5):141-143. DOI: 10.3969/j.issn.1672-6413.2014.05.058
|
[22] |
NICKABADI A,EBADZADEH M M,SAFABAKHSH R. A novel particle swarm optimization algorithm with adaptive inertia weight[J]. Applied Soft Computing,2011,11(4):3658-3670. DOI: 10.1016/j.asoc.2011.01.037
|
[23] |
LI T H S,LIN C J,KUO Pinghuan,et al. Grasping posture control design for a home service robot using an ABC-based adaptive PSO algorithm[J]. International Journal of Advanced Robotic Systems,2016,13(3). DOI: 10.5772/64044.
|
[1] | CHEN Zhiwen, CHEN Ailiangfei, TANG Xiaodan, KE Haobin, JIANG Zhaohui, XIAO Fei. YOLOv5s pruning method for edge computing of coal mine safety monitoring[J]. Journal of Mine Automation, 2024, 50(7): 89-97. DOI: 10.13272/j.issn.1671-251x.2024010095 |
[2] | XU Jun, ZHAO Xiaohu, HOU Nianqi, WANG Jie, LIU Yulin. A maintenance guidance system for coal mine electromechanical equipment based on improved YOLOv5s[J]. Journal of Mine Automation, 2024, 50(5): 151-156. DOI: 10.13272/j.issn.1671-251x.2023090069 |
[3] | YAN Bijuan, WANG Kaimin, GUO Pengcheng, ZHENG Xinxu, DONG Hao, LIU Yong. Research on coal gangue detection in coal preparation plant based on YOLOv5s-FSW model[J]. Journal of Mine Automation, 2024, 50(5): 36-43, 66. DOI: 10.13272/j.issn.1671-251x.2023100090 |
[4] | XU Ciqiang, JIA Yunhong, TIAN Yuan. Large block coal detection algorithm for fully mechanized working face based on MES-YOLOv5s[J]. Journal of Mine Automation, 2024, 50(3): 42-47, 141. DOI: 10.13272/j.issn.1671-251x.2024030009 |
[5] | HE Kai, CHENG Gang, WANG Xi, GE Qingnan, ZHANG Hui, ZHAO Dongyang. Research on coal gangue recognition method based on CED-YOLOv5s model[J]. Journal of Mine Automation, 2024, 50(2): 49-56, 82. DOI: 10.13272/j.issn.1671-251x.2023090065 |
[6] | HAO Mingyue, MIN Bingbing, ZHANG Xinjian, ZHAO Zuopeng, WU Chen, WANG Xin. A miner queue detection method based on improved YOLOv5s[J]. Journal of Mine Automation, 2023, 49(11): 160-166. DOI: 10.13272/j.issn.1671-251x.2023030058 |
[7] | ZHANG Hui, SU Guoyong, ZHAO Dongyang. Research on multi object detection in mining face based on FBEC-YOLOv5s[J]. Journal of Mine Automation, 2023, 49(11): 39-45. DOI: 10.13272/j.issn.1671-251x.2023060063 |
[8] | MIAO Changyun, SUN Dandan. Research on fault detection of belt conveyor drum based on improved YOLOv5s[J]. Journal of Mine Automation, 2023, 49(7): 41-48. DOI: 10.13272/j.issn.1671-251x.2022100039 |
[9] | ZHANG Xuhui, YAN Jianxing, ZHANG Chao, WAN Jicheng, WANG Lixin, HU Chengjun, WANG Li, WANG Dong. Coal block abnormal behavior identification based on improved YOLOv5s + DeepSORT[J]. Journal of Mine Automation, 2022, 48(6): 77-86, 117. DOI: 10.13272/j.issn.1671-251x.17915 |
[10] | SHEN Ke, JI Liang, ZHANG Yuanhao, ZOU Sheng. Research on coal and gangue detection algorithm based on improved YOLOv5s model[J]. Journal of Mine Automation, 2021, 47(11): 107-111. DOI: 10.13272/j.issn.1671-251x.17838 |
1. |
梁鹏翔, 何明剑, 李昂, 苗强. 钢丝绳损伤失效分析与检测技术综述. 人民黄河. 2025(S1)
![]() | |
2. |
张增彬. 煤矿主提升机钢丝绳张力及提升载荷监测系统设计研究. 机械管理开发. 2025(04): 196-198 .
![]() | |
3. |
毛清华,杨帆,王超,仝旭耀,童军伟,张旭辉,薛旭升. 基于改进YOLOv8n的矿用提升钢丝绳表面损伤图像识别. 工矿自动化. 2025(04): 100-106+152 .
![]() | |
4. |
周坪,王士豪,周公博,赵天驰,李煊瀚,闫晓东. 矿用钢丝绳双源磁回路结构设计与仿真分析. 工矿自动化. 2024(10): 135-146 .
![]() |