MA Liang, GAO Liang, LIAN Boxiang, et al. High-precision 3D point cloud modeling method for coal mine roadways based on known point constraints[J]. Journal of Mine Automation,2024,50(11):78-83, 151. DOI: 10.13272/j.issn.1671-251x.2024080093
Citation: MA Liang, GAO Liang, LIAN Boxiang, et al. High-precision 3D point cloud modeling method for coal mine roadways based on known point constraints[J]. Journal of Mine Automation,2024,50(11):78-83, 151. DOI: 10.13272/j.issn.1671-251x.2024080093

High-precision 3D point cloud modeling method for coal mine roadways based on known point constraints

More Information
  • Received Date: August 30, 2024
  • Revised Date: November 24, 2024
  • Available Online: December 01, 2024
  • In response to the complex conditions such as poor lighting, weak texture, and high concentrtaions of dust in underground coal mines, the existing 3D modeling methods for coal mine roadways have the disadvantages of high costs, poor timeliness, and low accuracy. A high-precision 3D point cloud modeling method for coal mine roadways based on known point constraints was proposed. The LiDAR point cloud data was downsampled by voxel filter, followed by the use of iterative closest point (ICP) matching for the downsampled LiDAR point cloud data to extract local point cloud maps. The point cloud data was then distortion-corrected using inertial measurement unit (IMU) data. ICP was utilized to align the local point cloud maps with the distortion-corrected point cloud maps, improving the accuracy and efficiency of front-end registration. Loopback detection was incorporated in the back-end to enhance the accuracy of coal mine roadway localization and mapping. The coordinates of the known points of the coal mine roadways were obtained through control measurements using connecting traverse, providing global constraints for point cloud modeling. A combined adjustment calculation was performed on the known points and the station points determined by LiDAR simultaneous localization and mapping (SLAM). The station point coordinates were corrected, and a nonlinear optimization method was further employed to adjust the global point cloud map coordinates, thereby improving the accuracy of 3D point cloud modeling. Experimental results demonstrated that the 3D point cloud map of coal mine roadways constructed by this method had high global consistency and geometric structure authenticity, achieving high localization and mapping accuracy in underground coal mines.

  • [1]
    王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41.

    WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41.
    [2]
    高毅楠,姚顽强,蔺小虎,等. 煤矿井下多重约束的视觉SLAM关键帧选取方法[J]. 煤炭学报,2024,49(增刊1):472-482.

    GAO Yinan,YAO Wanqiang,LIN Xiaohu,et al. Visual SLAM keyframe selection method with multiple constraints in underground coal mines[J]. Journal of China Coal Society,2024,49(S1):472-482.
    [3]
    徐志强,杨邦荣,王李管,等. 巷道实体的三维建模研究与实现[J]. 计算机工程与应用,2008,44(6):202-205. DOI: 10.3778/j.issn.1002-8331.2008.06.061

    XU Zhiqiang,YANG Bangrong,WANG Liguan,et al. Laneway entity three-dimensional modeling study and realization[J]. Computer Engineering and Applications,2008,44(6):202-205. DOI: 10.3778/j.issn.1002-8331.2008.06.061
    [4]
    刘杰,连增增,何荣,等. 基于近景摄影测量技术的地下巷道三维建模[J]. 金属矿山,2020(9):179-183.

    LIU Jie,LIAN Zengzeng,HE Rong,et al. 3D modeling of underground tunnel based on close range photogrammetry technique[J]. Metal Mine,2020(9):179-183.
    [5]
    汪云甲,伏永明. 矿井巷道三维自动建模方法研究[J]. 武汉大学学报(信息科学版),2006,31(12):1097-1100. DOI: 10.3969/j.issn.1671-8860.2006.12.016

    WANG Yunjia,FU Yongming. On 3D automatic modeling method of mine roadway[J]. Geomatics and Information Science of Wuhan University,2006,31(12):1097-1100. DOI: 10.3969/j.issn.1671-8860.2006.12.016
    [6]
    徐海,罗周全,刘晓明. 复杂巷道工程三维可视化建模方法研究及应用[J]. 矿冶工程,2011,31(1):19-23. DOI: 10.3969/j.issn.0253-6099.2011.01.006

    XU Hai,LUO Zhouquan,LIU Xiaoming. Study of 3D visualization modeling methods for complex roadway engineering and its application[J]. Mining and Metallurgical Engineering,2011,31(1):19-23. DOI: 10.3969/j.issn.0253-6099.2011.01.006
    [7]
    杨林,马宏伟,王岩. 基于激光惯性融合的煤矿井下移动机器人SLAM算法[J]. 煤炭学报,2022,47(9):3523-3534.

    YANG Lin,MA Hongwei,WANG Yan. LiDAR-Inertial SLAM for mobile robot in underground coal mine[J]. Journal of China Coal Society,2022,47(9):3523-3534.
    [8]
    董志华,姚顽强,蔺小虎,等. 煤矿井下顾及特征点动态提取的激光SLAM算法研究[J]. 煤矿安全,2023,54(8):241-246.

    DONG Zhihua,YAO Wanqiang,LIN Xiaohu,et al. LiDAR SLAM algorithm considering dynamic extraction of feature points in underground coal mine[J]. Safety in Coal Mines,2023,54(8):241-246.
    [9]
    李猛钢,胡而已,朱华. 煤矿移动机器人LiDAR/IMU紧耦合SLAM方法[J]. 工矿自动化,2022,48(12):68-78.

    LI Menggang,HU Eryi,ZHU Hua. LiDAR/IMU tightly-coupled SLAM method for coal mine mobile robot[J]. Journal of Mine Automation,2022,48(12):68-78.
    [10]
    马艾强,姚顽强,蔺小虎,等. 面向煤矿巷道环境的LiDAR与IMU融合定位与建图方法[J]. 工矿自动化,2022,48(12):49-56.

    MA Aiqiang,YAO Wanqiang,LIN Xiaohu,et al. Coal mine roadway environment-oriented LiDAR and IMU fusion positioning and mapping method[J]. Journal of Mine Automation,2022,48(12):49-56.
    [11]
    KIM H,CHOI Y. Location estimation of autonomous driving robot and 3D tunnel mapping in underground mines using pattern matched LiDAR sequential images[J]. International Journal of Mining Science and Technology,2021,31(5):779-788. DOI: 10.1016/j.ijmst.2021.07.007
    [12]
    刘敬娜,徐华龙,徐正国,等. 智慧矿山工业广场三维自动建模技术研究[J]. 时空信息学报,2024,31(4):524-532.

    LIU Jingna,XU Hualong,XU Zhengguo,et al. 3D automatic modeling technology for smart mining industrial square[J]. Journal of Spatio-Temporal Information,2024,31(4):524-532.
    [13]
    WANG Jiaheng,WANG Liguan,PENG Pingan,et al. Efficient and accurate mapping method of underground metal mines using mobile mining equipment and solid-state lidar[J]. Measurement,2023,221. DOI: 10.1016/j.measurement.2023.113581.
    [14]
    刘少杰,李志海,刘治翔,等. 基于激光扫描和三维栅格地图的掘进巷道空间建模方法研究[J]. 工程设计学报,2023,30(3):306-314. DOI: 10.3785/j.issn.1006-754X.2023.00.034

    LIU Shaojie,LI Zhihai,LIU Zhixiang,et al. Research on spatial modeling method for excavation tunnels based on laser scanning and 3D grid map[J]. Chinese Journal of Engineering Design,2023,30(3):306-314. DOI: 10.3785/j.issn.1006-754X.2023.00.034
    [15]
    江记洲,郭甲腾,吴立新,等. 基于三维激光扫描点云的矿山巷道三维建模方法研究[J]. 煤矿开采,2016(2):109-113.

    JIANG Jizhou,GUO Jiateng,WU Lixin,et al. 3-D modeling method of mine roadway based on 3-D laser scanning point cloud[J]. Coal Mining Technology,2016(2):109-113.
    [16]
    GURGEL M J M,PREUSSE A. New opportunities and challenges in surveying underground cavities using photogrammetric methods[J]. International Journal of Mining Science and Technology,2021,31(1):9-13. DOI: 10.1016/j.ijmst.2020.12.005
    [17]
    BESL P J,MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256. DOI: 10.1109/34.121791
    [18]
    KIM G,KIM A. Scan context:egocentric spatial descriptor for place recognition within 3D point cloud map[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Madrid,2018:4802-4809.
    [19]
    张继贤,肖雨彤. 仙泉煤矿井下导线网设计与测量成果分析[J]. 煤炭工程,2019,51(5):163-167.

    ZHANG Jixian,XIAO Yutong. Underground traverse network design and analysis of measurement results in Xianquan Coal Mine[J]. Coal Engineering,2019,51(5):163-167.
    [20]
    SHAN Tixiao,ENGLOT B. LeGO-LOAM:lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Madrid,2018:4758-4765.
    [21]
    SHAN Tixiao,ENGLOT B,MEYERS D,et al. LIO-SAM:tightly-coupled lidar inertial odometry via smoothing and mapping[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Las Vegas,2020:5135-5142.
  • Related Articles

    [1]GUO Liang, SONG Jiancheng, NING Zhenbing, WANG Mingyong, LIN Lingyan, HUANG Jianqi. Positioning algorithm of mine-used monorail crane locomotive based on strapdown inertial navigatio[J]. Journal of Mine Automation, 2021, 47(1): 49-54. DOI: 10.13272/j.issn.1671-251x.2020080015
    [2]WANG Xiaosong. Accelerated test of working stability of mine-used laser methane sensor[J]. Journal of Mine Automation, 2019, 45(12): 45-49. DOI: 10.13272/j.issn.1671-251x.2018100034
    [3]ZHANG Yanjun, WANG Junyuan, DONG Lei, DU Wenhua, LI Yong, WANG Shengli. Analysis of vibration characteristics of cutting arm of EML340 continuous miner[J]. Journal of Mine Automation, 2016, 42(12): 63-67. DOI: 10.13272/j.issn.1671-251x.2016.12.014
    [4]JI Xiaodong, XUE Guanghui, YANG Jianjian, WU Miao. Development of mine-used signal conditioning device of vibration acceleration sensor[J]. Journal of Mine Automation, 2014, 40(5): 106-108. DOI: 10.13272/j.issn.1671-251x.2014.05.028
    [5]XU Xiao-lei, ONG Bo-ming, GUO Ling-ling, YUAN Wei-chen, XU Zhao. Design of energy consumption monitoring node of crane[J]. Journal of Mine Automation, 2013, 39(11): 95-97. DOI: 10.7526/j.issn.1671-251X.2013.11.025
    [6]JIANG Zhi-long, ZHANG Da-nü. Design of Coal Piling Sensor Based on ADXL335[J]. Journal of Mine Automation, 2012, 38(8): 87-89.
    [7]ZHANG Shou-fu, LIU Hong-chao. Design of Signal Acquisition Circuit of NAMUR Speed Sensor[J]. Journal of Mine Automation, 2011, 37(8): 113-115.
    [8]XU Le-nian, LI Wen-jing, GAO Shuang. Design of Mine-used Intelligent Tilt Angle Sensor Based on M-BUS[J]. Journal of Mine Automation, 2010, 36(11): 20-23.
    [9]WANG Yong-chao, SUN Huai-xiang. Application of Access and MCGS in Loading System of Main Shaft[J]. Journal of Mine Automation, 2010, 36(5): 94-97.
    [10]MA Xian-mi. Design of DSPbased AC Speed Regulating System without Speed Sensor[J]. Journal of Mine Automation, 2000, 26(3): 1-3.

Catalog

    JIANG Zhiyue

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (614) PDF downloads (52) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return