Citation: | LI Ye, JIN Yeyong. Design of a miniaturized bidirectional beam mine positioning terminal antenna[J]. Journal of Mine Automation,2024,50(11):127-131, 178. DOI: 10.13272/j.issn.1671-251x.2024080085 |
Bidirectional antennas can effectively improve signal coverage and antenna coupling efficiency, and weaken multipath effects caused by reflections from roadway sidewalls. These characteristics make them suitable for underground coal mine roadways with narrow structures and small cross-section. To address the problems of large size, low gain, and insufficient bandwidth of existing bidirectional antennas that do not meet the requirements of underground ultra-wide band (UWB) precise positioning systems, a miniaturized bidirectional beam mine positioning terminal antenna was designed. By arranging two equal-amplitude, in-phase U-shaped monopole antennas and introducing a U-shaped slot structure on the metal floor, the radiation characteristics of the bidirectional side-beam were realized while ensuring the compact structure of the antennas. Simulation and experimental results demonstrated that the antenna achieved a −10 dB bandwidth of 1 GHz (3.6-4.6 GHz), effectively covering the operational frequency band (3.7-4.2 GHz) of UWB personnel precise positioning systems in coal mines. Within the frequency band of 3.6-4.6 GHz, the antenna achieved a peak gain of 2.2-2.5 dBi, with good amplitude-frequency response.
[1] |
孙继平. 矿井人员位置监测技术[J]. 工矿自动化,2023,49(6):41-47.
SUN Jiping. Mine personnel position monitoring technology[J]. Journal of Mine Automation,2023,49(6):41-47.
|
[2] |
李明锋,李䶮,刘用,等. 基于5G+UWB和惯导技术的井下人员定位系统[J]. 工矿自动化,2024,50(1):25-34.
LI Mingfeng,LI Yan,LIU Yong,et al. Underground personnel positioning system based on 5G+UWB and inertial navigation technology[J]. Journal of Mine Automation,2024,50(1):25-34.
|
[3] |
杜春晖. 基于多技术融合的煤矿井下采掘运输设备防碰撞系统[J]. 煤炭学报,2020,45(增刊2):1060-1068.
DU Chunhui. Anti-collision system of mining and transportation equipment in coal mine based on multi-technology integration[J]. Journal of China Coal Society,2020,45(S2):1060-1068.
|
[4] |
韩江洪,卫星,陆阳,等. 煤矿井下机车无人驾驶系统关键技术[J]. 煤炭学报,2020,45(6):2104-2115.
HAN Jianghong,WEI Xing,LU Yang,et al. Driverless technology of underground locomotive in coal mine[J]. Journal of China Coal Society,2020,45(6):2104-2115.
|
[5] |
葛世荣,王世佳,曹波,等. 智能采运机组自主定位原理与技术[J]. 煤炭学报,2022,47(1):75-86.
GE Shirong,WANG Shijia,CAO Bo,et al. Autonomous positioning principle and technology of intelligent shearer and conveyor[J]. Journal of China Coal Society,2022,47(1):75-86.
|
[6] |
刘超,符世琛,成龙,等. 基于TSOA定位原理混合算法的掘进机位姿检测方法[J]. 煤炭学报,2019,44(4):1255-1264.
LIU Chao,FU Shichen,CHENG Long,et al. Pose detection method based on hybrid algorithm of TSOA positioning principle for roadheader[J]. Journal of China Coal Society,2019,44(4):1255-1264.
|
[7] |
韩梦辉,曹波,王世博,等. 矩形矿井巷道内UWB路径损耗研究[J]. 煤炭技术,2024,43(10):218-222.
HAN Menghui,CAO Bo,WANG Shibo,et al. Study on UWB path loss in rectangular mine roadway[J]. Coal Technology,2024,43(10):218-222.
|
[8] |
ZHOU Chenming,PLASS T,JACKSHA R,et al. RF propagation in mines and tunnels:extensive measurements for vertically,horizontally,and cross-polarized signals in mines and tunnels[J]. IEEE Antennas and Propagation Magazine,2015,57(4):88-102. DOI: 10.1109/MAP.2015.2453881
|
[9] |
霍羽,徐钊,刘逢雪. 融合波模和射线理论的矿井电波传播模型[J]. 电子学报,2013,41(1):110-116. DOI: 10.3969/j.issn.0372-2112.2013.01.020
HUO Yu,XU Zhao,LIU Fengxue. A wave propagation model combined the modal theory and ray theory in coal mine tunnels[J]. Acta Electronica Sinica,2013,41(1):110-116. DOI: 10.3969/j.issn.0372-2112.2013.01.020
|
[10] |
霍羽,徐钊,郑红党. 矩形隧道中的多波模传播特性[J]. 电波科学学报,2010,25(6):1225-1230.
HUO Yu,XU Zhao,ZHENG Hongdang. Characteristics of multimode propagation in rectangular tunnels[J]. Chinese Journal of Radio Science,2010,25(6):1225-1230.
|
[11] |
霍羽,刘逢雪,徐钊. 煤矿井巷天线位置对辐射场分布的影响[J]. 煤炭学报,2013,38(4):715-720.
HUO Yu,LIU Fengxue,XU Zhao. Effect of antenna location on radiation field distribution in coal mine tunnels[J]. Journal of China Coal Society,2013,38(4):715-720.
|
[12] |
GRAJEK P R,SCHOENLINNER B,REBEIZ G M. A 24-GHz high-gain Yagi-Uda antenna array[J]. IEEE Transactions on Antennas and Propagation,2004,52(5):1257-1261. DOI: 10.1109/TAP.2004.827543
|
[13] |
ZHANG J,ZHANG X M,LIU J S,et al. Dual-band bidirectional high gain antenna for WLAN 2.4/5.8 GHz applications[J]. Electronics Letters,2009,45(1):6-7. DOI: 10.1049/el:20092617
|
[14] |
CHEN S Y. Broadband slot-type Bruce array fed by a microstrip-to-slotline T-junction[J]. IEEE Antennas and Wireless Propagation Letters,2009,8:116-119. DOI: 10.1109/LAWP.2008.2012278
|
[15] |
LIU Wendong,ZHANG Zhijun,TIAN Zijian,et al. A bidirectional high-gain cascaded ring antenna for communication in coal mine[J]. IEEE Antennas and Wireless Propagation Letters,2013,12:761-764. DOI: 10.1109/LAWP.2013.2270936
|
[16] |
LIU Longsheng,ZHANG Zhijun,TIAN Zijian,et al. A bidirectional endfire array with compact antenna elements for coal mine/tunnel communication[J]. IEEE Antennas and Wireless Propagation Letters,2012,11:342-345. DOI: 10.1109/LAWP.2012.2191383
|
[17] |
EUBANKS T W,CHANG Kai. A compact parallel-plane perpendicular-current feed for a modified equiangular spiral antenna[J]. IEEE Transactions on Antennas and Propagation,2010,58(7):2193-2202. DOI: 10.1109/TAP.2010.2048856
|
[18] |
LI Yue,ZHANG Zhijun,CHEN Wenhua,et al. A dual-polarization slot antenna using a compact CPW feeding structure[J]. IEEE Antennas and Wireless Propagation Letters,2010,9:191-194. DOI: 10.1109/LAWP.2010.2044865
|
[19] |
IWASAKI H. Microstrip antenna with back-to-back configuration relative to a slot on a ground plane[J]. Electronics Letters,1998,34(14):1373-1374. DOI: 10.1049/el:19980998
|
[20] |
李烨. 面向5G大规模MIMO天线阵的一体式滤波技术研究[D]. 苏州:苏州大学,2021.
LI Ye. Research on integrated filtering technology for 5G massive MIMO antenna array[D]. Suzhou:Soochow University,2021.
|
[21] |
吕瑞杰. 煤矿井下UWB信号路径损耗测量及中心频率选择[J]. 工矿自动化,2023,49(4):147-152.
LYU Ruijie. Measurement of UWB signal path loss and center frequency selection in underground coal mines[J]. Journal of Mine Automation,2023,49(4):147-152.
|