Citation: | LIU Peng, ZHANG Lei, BAO Jiusheng, et al. DITC control strategy for semi-direct drive system with switched reluctance motor in coal mine belt conveyor[J]. Journal of Mine Automation,2024,50(12):93-102, 127. DOI: 10.13272/j.issn.1671-251x.2024060040 |
The underground belt conveyor at Pingdingshan Tian'an Coal Mining No. 9 Co., Ltd. uses a drive system consisting of an asynchronous motor, hydraulic coupling, and reduction gears. This system exhibits issues such as low transmission efficiency, lengthy transmission chain, and poor speed regulation performance. To address these limitations, the drive system was retrofitted with a 2×400 kW switched reluctance motor semi-direct drive(SRSD) system utilizing a switched reluctance motor(SRM) for the belt conveyor. A BP neural network was used to predict the flux linkage and torque of the SRM, and a highly accurate SRM nonlinear model was developed based on the predictions. By combining the torque variation patterns of the SRM in the commutation zone and the PWM control principles, an improved direct instantaneous torque control(DITC) strategy was proposed. Torque error was used as the input, and PWM control was applied to phase currents within the torque error threshold in this strategy. Simulations under no-load and variable load conditions of the belt conveyor were conducted. The results showed that the improved DITC strategy significantly reduced the torque ripple of SRM compared to the traditional DITC strategy, with a maximum reduction of 39.1%, thereby improving the operational stability of the SRSD system for the belt conveyor. Based on the key structural parameters of the SRM and the improved DITC strategy, the SRSD system for belt conveyors was developed and tested in an underground coal mine. The results showed that the SRSD system enabled smooth full-load startup, demonstrated excellent dynamic performance, and reduced power consumption by 24% compared to the original drive system.
[1] |
韩文娟. 智能煤流调速系统的适用性分析[J]. 煤矿机械,2022,43(11):129-131.
HAN Wenjuan. Analysis on applicability of intelligent coal flow speed regulation system[J]. Coal Mine Machinery,2022,43(11):129-131.
|
[2] |
李剑. 顺槽带式输送机用张紧绞车设计与安全制动器热−力耦合特性研究[D]. 徐州:中国矿业大学,2022.
LI Jian. Study on design and thermal-mechanical coupling characteristics of safety brake of take-up winch of belt conveyor used in face crossheading[D]. Xuzhou:China University of Mining and Technology,2022.
|
[3] |
白应光,丁震,刘洋,等. 煤矿带式输送机智能化关键技术浅析[J]. 工矿自动化,2023,49(增刊2):27-29,51.
BAI Yingguang,DING Zhen,LIU Yang,et al. Analysis on the key technologies of intelligent belt conveyor in coal mine[J]. Journal of Mine Automation,2023,49(S2):27-29,51.
|
[4] |
WANG Li,LI Haoxin,HUANG Jingkai,et al. Research on and design of an electric drive automatic control system for mine belt conveyors[J]. Processes,2023,11(6):DOI:10.3390/PR11061762.
|
[5] |
蒋卫良,郗存根,宋兴元,等. 煤矿带式输送机关键技术发展现状与展望[J]. 智能矿山,2020,1(1):98-104.
JIANG Weiliang,XI Cungen,SONG Xingyuan,et al. Development status and prospect of key technology of coal mine belt conveyor[J]. Journal of Intelligent Mine,2020,1(1):98-104.
|
[6] |
MEESALA R E K,UDUMULA R R,NIZAMI T K,et al. Development of enhanced direct torque control for surface-mounted permanent magnet synchronous motor drive operation[J]. IET Power Electronics,2023,16(11):1814-1827. DOI: 10.1049/pel2.12504
|
[7] |
张磊,鲍久圣,葛世荣,等. 永磁驱动技术及其在矿山装备领域的应用现状[J]. 煤炭科学技术,2022,50(3):275-284.
ZHANG Lei,BAO Jiusheng,GE Shirong,et al. Permanent magnet driving technology and its application status in the field of mining equipment[J]. Coal Science and Technology,2022,50(3):275-284.
|
[8] |
郑祝平. 矿用永磁滚筒关键技术研究[D]. 北京:煤炭科学研究总院,2022.
ZHENG Zhuping. Research on key technology of mining permanent magnet roller[D]. Beijing:China Coal Research Institute,2022.
|
[9] |
邓才明. 带式输送机永磁直驱电滚筒失磁分析及故障检测研究[D]. 邯郸:河北工程大学,2022.
DENG Caiming. Research on demagnetization analysis and fault detection of permanent magnet electric roller of belt conveyor[D]. Handan:Hebei University of Engineering,2022.
|
[10] |
SESHADRI A,LENIN N C. Review based on losses,torque ripple,vibration and noise in switched reluctance motor[J]. IET Electric Power Applications,2020,14(8):1311-1326. DOI: 10.1049/iet-epa.2019.0251
|
[11] |
韩朋,边敦新,熊立新,等. 抽油机用盘式开关磁阻电机的电磁优化设计[J]. 石油机械,2022,50(7):115-123.
HAN Peng,BIAN Dunxin,XIONG Lixin,et al. Electromagnetic optimization design of disc-type switched reluctance motor for pumping unit[J]. China Petroleum Machinery,2022,50(7):115-123.
|
[12] |
吴红星. 开关磁阻电机系统理论与控制技术[M]. 北京:中国电力出版社,2010.
WU Hongxing. Theory and control technology of switched reluctance motor system[M]. Beijing:China Electric Power Press,2010.
|
[13] |
鲍久圣,张小牛,王雷,等. 一种全开关磁阻电机水冷半直驱式带式输送机:CN2024104401283[P]. 2024-04-12.
BAO Jiusheng,ZHANG Xiaoniu,WANG Lei,et al. A fully SRM water-cooled semi-direct drive belt conveyor:CN2024104401315[P]. 2024-04-12.
|
[14] |
李瑞金. 矿用开关磁阻电机车控制系统设计[J]. 工矿自动化,2015,41(9):22-25.
LI Ruijin. Design of control system of mine-used switched reluctance electric locomotive[J]. Industry and Mine Automation,2015,41(9):22-25.
|
[15] |
田玉丽,刘东晓. 平煤集团六矿矸石山绞车电控系统的改造[J]. 煤矿机械,2010,31(3):172-173.
TIAN Yuli,LIU Dongxiao. Pingdingshan Coal Mine Group No.6 mine waste dump winch electric control system transformation[J]. Coal Mine Machinery,2010,31(3):172-173.
|
[16] |
李亦滔. 开关磁阻电机转矩脉动抑制综述[J]. 电机技术,2019(6):53-58.
LI Yitao. Review on torque ripple suppression of the switched reluctance motor[J]. Electrical Machinery Technology,2019(6):53-58.
|
[17] |
陈吉清,冼浩岚,兰凤崇,等. 开关磁阻电机结构性转矩脉动抑制方法[J]. 机械工程学报,2020,56(20):106-119. DOI: 10.3901/JME.2020.20.106
CHEN Jiqing,XIAN Haolan,LAN Fengchong,et al. Structural torque ripple suppression method of switched reluctance motor[J]. Journal of Mechanical Engineering,2020,56(20):106-119. DOI: 10.3901/JME.2020.20.106
|
[18] |
黄朝志,段锦锋,曹文盛. 新型分段定子开关磁阻电机转矩增强和径向力减小的分析研究[J]. 机械科学与技术,2023,42(7):1035-1043.
HUANG Chaozhi,DUAN Jinfeng,CAO Wensheng. Research on torque enhancement and radial force reduction of novel switched reluctance motor with segmental stators[J]. Mechanical Science and Technology for Aerospace Engineering,2023,42(7):1035-1043.
|
[19] |
姚璋,陈树明. 开关磁阻电机发展及转矩脉动抑制策略研究[J]. 科技创新导报,2019,16(4):121-124.
YAO Zhang,CHEN Shuming. Development of switched reluctance motor and research on torque ripple suppression strategy[J]. Science and Technology Innovation Herald,2019,16(4):121-124.
|
[20] |
邹洪建. 车载开关磁阻电机智能化调速控制策略的研究[D]. 北京:北京建筑大学,2022.
ZOU Hongjian. Research on intelligent speed control strategy of on-board switched reluctance motor[D]. Beijing:Beijing University of Civil Engineering and Architecture,2022.
|
[21] |
CHENG He,GE Xudong,WANG Lunjun,et al. Four-quadrant sensorless operation of switched reluctance machine over the wide speed range[J]. Electric Power Components and Systems,2020,48(2):224-240.
|
[22] |
李大威,王勉华,刘春元. 开关磁阻电机的直接瞬时转矩控制系统设计与仿真[J]. 电机与控制应用,2011,38(2):11-14.
LI Dawei,WANG Mianhua,LIU Chunyuan. Direct instantaneous torque control system design and simulation of switched reluctance motor[J]. Electric Machines & Control Application,2011,38(2):11-14.
|
[23] |
程勇,曹晓晓,张怡龙. 开关磁阻电机滞环−脉宽调制直接瞬时转矩控制[J]. 电机与控制学报,2020,24(8):74-82.
CHENG Yong,CAO Xiaoxiao,ZHANG Yilong. Hysteresis-PWM direct instantaneous torque control of switched reluctance motor[J]. Electric Machines and Control,2020,24(8):74-82.
|
[24] |
SINGH S K,TRIPATHI R K. Minimization of torque ripples in SRM drive using DITC for electrical vehicle application[C]. Students Conference on Engineering and Systems,Allahabad,2013. DOI: 10.1109/SCES.2013.6547569.
|
[25] |
韩国强,陆哲,吴孟霖,等. 基于改进滑模控制策略的开关磁阻电机直接瞬时转矩控制方法[J]. 电工技术学报,2022,37(22):5740-5755.
HAN Guoqiang,LU Zhe,WU Menglin,et al. Direct instantaneous torque control method for switched reluctance motor based on an improved sliding mode control strategy[J]. Transactions of China Electrotechnical Society,2022,37(22):5740-5755.
|
[26] |
葛世荣. 刮板输送机技术发展历程(三)——驱动与智能控制技术[J]. 中国煤炭,2024,50(4):1-12.
GE Shirong. The development history of scraper conveyor technology (part three):intelligent drive and control technology[J]. China Coal,2024,50(4):1-12.
|
[27] |
葛世荣,鲍久圣,曹国华. 采矿运输技术与装备[M]. 北京:煤炭工业出版社,2015.
GE Shirong,BAO Jiusheng,CAO Guohua. Transportation and hoisting technology and equipments in mining[M]. Beijing:China Coal Industry Publishing House,2015.
|
[28] |
秦大同,谢里阳. 现代机械设计手册——机械传动设计[M]. 北京:化学工业出版社,2013.
QIN Datong,XIE Liyang. Handbook of modern mechanical design-mechanical transmission design[M]. Beijing:Chemical Industry Press,2013.
|
[29] |
阴妍. 盘式制动器摩擦故障融合诊断与智能预报方法研究[D]. 徐州:中国矿业大学,2019.
YIN Yan. Research on fusion diagnosis and intelligent prediction method of friction fault of disc brake[D]. Xuzhou:China University of Mining and Technology,2019.
|
1. |
刘天畅, 张守亮, 蒙丹, 吴任翔. 基于改进YOLOv8网络的高精度仪器仪表示值识别算法研究. 铁道技术监督. 2025(06)
![]() | |
2. |
杨辉,李响,段兴宇. 基于YOLACT高温高粉尘钢包液面检测方法的研究. 冶金与材料. 2025(04): 101-103 .
![]() | |
3. |
袁永,秦正寒,夏永琪,武让,李立宝,李勇. 基于改进U-Net的煤矸图像分割模型与放煤控制技术. 煤炭学报. 2025(05): 2722-2738 .
![]() | |
4. |
程刚,陈杰,潘泽烨,魏溢凡,陈森森. 基于水传热和红外热成像的煤矸识别方法. 工矿自动化. 2024(01): 66-71+137 .
![]() | |
5. |
郑松涛,孙志鹏,陶虹京. 基于GSP-YOLO煤矸石检测算法研究. 山西焦煤科技. 2024(02): 6-10+14 .
![]() | |
6. |
燕碧娟,王凯民,郭鹏程,郑馨旭,董浩,刘勇. 基于YOLOv5s-FSW模型的选煤厂煤矸检测研究. 工矿自动化. 2024(05): 36-43+66 .
![]() | |
7. |
边铁山. 基于SE-YOLOv5模型皮带异物检测算法研究. 中国矿业. 2024(07): 127-134 .
![]() | |
8. |
韦小龙,王方田,何东升,刘超,徐大连. 基于CSPNet-YOLOv7目标检测算法的煤矸图像识别模型. 煤炭科学技术. 2024(S1): 238-248 .
![]() | |
9. |
高琳,于鹏伟,董红娟,梁朝辉,张志远. 基于机器视觉的煤矸石识别方法综述. 科学技术与工程. 2024(26): 11039-11049 .
![]() | |
10. |
汤博宇,魏小玉,王彦生,李家源,孟琳. 基于改进YOLOv5的驾驶员玩手机行为检测. 计算机与数字工程. 2024(11): 3404-3409+3445 .
![]() | |
11. |
孙林,陈圣,姚旭龙,张艳博,陶志刚,梁鹏. 煤矿井下残缺信息的多目标检测方法研究. 煤炭科学技术. 2024(S2): 211-220 .
![]() | |
12. |
郝明月,闵冰冰,张新建,赵作鹏,吴晨,王欣. 基于改进YOLOv5s的矿工排队检测方法. 工矿自动化. 2023(11): 160-166 .
![]() | |
13. |
张继成,侯郁硕,郑萍,夏士兴. 低数据集下基于ASPP-YOLO v5的苋菜识别方法研究. 农业机械学报. 2023(S2): 223-228 .
![]() | |
14. |
吕昌,尹和,邵叶秦. 基于结构重参数化的目标检测模型. 电子测量技术. 2023(18): 114-121 .
![]() |