CHEN Yingxian, ZHU Zhe, MA Huiru, et al. Research on tetrahedral adaptive mesh grading refinement for intersecting faults[J]. Journal of Mine Automation,2024,50(9):153-160. DOI: 10.13272/j.issn.1671-251x.2024030058
Citation: CHEN Yingxian, ZHU Zhe, MA Huiru, et al. Research on tetrahedral adaptive mesh grading refinement for intersecting faults[J]. Journal of Mine Automation,2024,50(9):153-160. DOI: 10.13272/j.issn.1671-251x.2024030058

Research on tetrahedral adaptive mesh grading refinement for intersecting faults

More Information
  • Received Date: March 21, 2024
  • Revised Date: July 28, 2024
  • Available Online: August 01, 2024
  • Current tetrahedral adaptive mesh refinement techniques have primarily focused on the 3D reconstruction and analysis of simple stratified geological bodies. When applying adaptive mesh refinement to complex geological structures, such as those containing intersecting faults with discontinuous data, excessive refinement can easily lead to compromised mesh structures in the fault zones. To improve the accuracy of tetrahedral mesh models for such complex fault systems, this study proposed a tetrahedral adaptive mesh grading refinement method specifically for intersecting faults. Initially, the refinement range around the fault was adaptively determined based on a fault influence formula. Subdivision formulas were then developed for tetrahedrons and tetrahedral edges to grade both the tetrahedrons and their edges within the refinement range. To address the various scenarios that arose during tetrahedral mesh subdivision, the eight types of subdivisions were unified into three types by upgrading the edge treatments. Finally, new vertices were introduced, and existing vertices were reconnected to tetrahedrons within the refined area, adjusting mesh element sizes to generate a high-quality mesh model. A case study was conducted on a tetrahedral mesh model from an open-pit coal mine in Inner Mongolia. The mesh model was analyzed before and after refinement using a 3D mesh quality evaluation algorithm and FLAC3D simulation software. Results showed that the distortion value of the refined mesh model decreased from 0.3317 to 0.3061, indicating an improvement in mesh quality. Under the same parameters, the unrefined model exhibited a maximum displacement of 1.16 m with a stability coefficient of 1.27, while the refined model showed a maximum displacement of 1.29 m and a stability coefficient of 1.23. The displacement cloud map of the refined model was aligned with the fault, accurately reflecting the fault distribution and its impact on the slope. In contrast, the displacement cloud map of the unrefined model was misaligned with the fault center, demonstrating a less pronounced effect of the fault on the slope.
  • [1]
    PAPOUTSAKIS A,SAZHIN S S,BEGG S,et al. An efficient adaptive mesh refinement (AMR) algorithm for the discontinuous Galerkin method:applications for the computation of compressible two-phase flows[J]. Journal of Computational Physics,2018,363:399-427. DOI: 10.1016/j.jcp.2018.02.048
    [2]
    SCHILLINGER D,RANK E. An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry[J]. Computer Methods in Applied Mechanics and Engineering,2011,200(47/48):3358-3380.
    [3]
    ZENG W,LIU G R. Smoothed finite element methods (S-FEM):an overview and recent developments[J]. Archives of Computational Methods in Engineering,2018,25(2):397-435. DOI: 10.1007/s11831-016-9202-3
    [4]
    SINGH D,FRIIS H A,JETTESTUEN E,et al. Adaptive mesh refinement in locally conservative level set methods for multiphase fluid displacements in porous media[J]. Computational Geosciences,2023,27(5):707-736. DOI: 10.1007/s10596-023-10219-0
    [5]
    CORCOLES-ORTEGA J,SALAZAR-PALMA M. Self-adaptive algorithms based on h-refinement applied to finite element method[C]. IEEE Antennas and Propagation Society International Symposium,Washington,2005. DOI:10.1109/APS. 2005.1552777.
    [6]
    ZHOU Longquan,WANG Hongjuan,LU Xinming,et al. Algorithm for curved surface mesh generation based on delaunay refinement[J]. International Journal of Pattern Recognition and Artificial Intelligence,2020,34(4). DOI: 10.1142/S021800142050007X.
    [7]
    DÖRFEL M R,JÜTTLER B,SIMEON B. Adaptive isogeometric analysis by local h-refinement with T-splines[J]. Computer Methods in Applied Mechanics and Engineering,2010,199(5/6/7/8):264-275.
    [8]
    YOU Y H,KOU X Y,TAN S T. Adaptive tetrahedral mesh generation of 3D heterogeneous objects[J]. Computer-Aided Design and Applications,2015,12(5):580-588. DOI: 10.1080/16864360.2015.1014736
    [9]
    LI Xiangrong,SHEPHARD M S,BEALL M W. 3D anisotropic mesh adaptation by mesh modification[J]. Computer Methods in Applied Mechanics and Engineering,2005,194(48/49):4915-4950.
    [10]
    PETROV M S,TODOROV T D. Refinement strategies related to cubic tetrahedral meshes[J]. Applied Numerical Mathematics,2019,137:169-183. DOI: 10.1016/j.apnum.2018.11.006
    [11]
    BELDA-FERRÍN G,GARGALLO-PEIRÓ A,ROCA X. Local bisection for conformal refinement of unstructured 4D simplicial meshes[M]. Cham:Springer International Publishing,2019:229-247.
    [12]
    LYU Z. Simplicial mesh refinement in computational geometry [D]. San Diego:University of California,2018.
    [13]
    ALKÄMPER M. Mesh refinement for parallel-adaptive FEM:theory and implementation [D]. Stuttgart:Universität Stuttgart,2019.
    [14]
    DE COUGNY H L,SHEPHARD M S. Parallel refinement and coarsening of tetrahedral meshes[J]. International Journal for Numerical Methods in Engineering,1999,46(7):1101-1125. DOI: 10.1002/(SICI)1097-0207(19991110)46:7<1101::AID-NME741>3.0.CO;2-E
    [15]
    BRONSON J R. New approaches to quality tetrahedral mesh generation [D]. Salt Lake City:The University of Utah,2015.
    [16]
    ANTEPARA O,BALCÁZAR N,OLIVA A. Tetrahedral adaptive mesh refinement for two-phase flows using conservative level-set method[J]. International Journal for Numerical Methods in Fluids,2021,93(2):481-503.
    [17]
    ZHANG Wenjing,MA Yuewen,ZHENG Jianmin,et al. Tetrahedral mesh deformation with positional constraints[J]. Computer Aided Geometric Design,2020,81. DOI: 10.1016/j.cagd.2020.101909.
    [18]
    钟德云,王李管,毕林. 复杂矿体模型多域自适应网格剖分方法[J]. 武汉大学学报(信息科学版),2019,44(10):1538-1544.

    ZHONG Deyun,WANG Liguan,BI Lin. Adaptive meshing of multi-domain complex orebody models[J]. Geomatics and Information Science of Wuhan University,2019,44(10):1538-1544.
    [19]
    周龙泉. 非结构化有限元网格生成方法及其应用研究[D]. 青岛:山东科技大学,2019.

    ZHOU Longquan. Research on unstructured finite element mesh generation method and its application[D]. Qingdao:Shandong University of Science and Technology,2019.
    [20]
    雷光伟,杨春和,王贵宾,等. 断层影响带的发育规律及其力学成因[J]. 岩石力学与工程学报,2016,35(2):231-241.

    LEI Guangwei,YANG Chunhe,WANG Guibin,et al. The development law and mechanical causes of fault influenced zone[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(2):231-241.
    [21]
    BEY J. Tetrahedral grid refinement[J]. Computing,1995,55(4):355-378. DOI: 10.1007/BF02238487
    [22]
    NGO L C,CHOI H G. A multi-level adaptive mesh refinement method for level set simulations of multiphase flow on unstructured meshes[J]. International Journal for Numerical Methods in Engineering,2017,110(10):947-971. DOI: 10.1002/nme.5442
    [23]
    LIU Anwei,JOE B. Quality local refinement of tetrahedral meshes based on 8-subtetrahedron subdivision[J]. Mathematics of Computation,1996,65(215):1183-1200. DOI: 10.1090/S0025-5718-96-00748-X
    [24]
    XI Ning,SUN Yingjie,XIAO Lei,et al. Designing parallel adaptive Laplacian smoothing for improving tetrahedral mesh quality on the GPU[J]. Applied Sciences,2021,11(12):5543. DOI: 10.3390/app11125543
    [25]
    ZHANG Linbo. A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection[J]. Numerical Mathematics:Theory Methods and Applications,2009(1):65-89.
    [26]
    SUN Lu,ZHAO Guoqun,MA Xinwu. Adaptive generation and local refinement methods of three-dimensional hexahedral element mesh[J]. Finite Elements in Analysis and Design,2012,50:184-200. DOI: 10.1016/j.finel.2011.09.009
    [27]
    BORKER R,HUANG D,GRIMBERG S,et al. Mesh adaptation framework for embedded boundary methods for computational fluid dynamics and fluid-structure interaction[J]. International Journal for Numerical Methods in Fluids,2019,90(8):389-424. DOI: 10.1002/fld.4728
    [28]
    LAURENT G,CAUMON G,BOUZIAT A,et al. A parametric method to model 3D displacements around faults with volumetric vector fields[J]. Tectonophysics,2013,590:83-93. DOI: 10.1016/j.tecto.2013.01.015
    [29]
    WANG Bowen,MEI Gang,XU Nengxiong. Method for generating high-quality tetrahedral meshes of geological models by utilizing CGAL[J]. MethodsX,2020,7. DOI: 10.1016/j.mex.2020.101061.
    [30]
    郭甲腾,代欣位,刘善军,等. 一种三维地质体模型的隐式剖切方法[J]. 武汉大学学报(信息科学版),2021,46(11):1766-1773.

    GUO Jiateng,DAI Xinwei,LIU Shanjun,et al. An implicit cutting method for 3D geological body model[J]. Geomatics and Information Science of Wuhan University,2021,46(11):1766-1773.
    [31]
    江亮亮,杨付正. 利用曲率分析的三维网格质量评估方法[J]. 电子与信息学报,2014,36(11):2781-2785.

    JIANG Liangliang,YANG Fuzheng. A 3D mesh quality assessment metric via analyzing curvature[J]. Journal of Electronics & Information Technology,2014,36(11):2781-2785.
  • Related Articles

    [1]LI Yun. Analysis and constraint methods for intra-flow contention in multi-hop paths of wireless mesh networks in mines[J]. Journal of Mine Automation, 2025, 51(4): 74-85. DOI: 10.13272/j.issn.1671-251x.2025020072
    [2]WEI Zhenghua, YE Xiaolan. Design of wireless Mesh communication system in coal mine[J]. Journal of Mine Automation, 2021, 47(10): 115-120. DOI: 10.13272/j.issn.1671-251x.2021060080
    [3]GAO Siwei, LI Se. Research on application of fast roaming and Mesh network technology of WiFi communication on fully mechanized coal mining face[J]. Journal of Mine Automation, 2019, 45(2): 35-40. DOI: 10.13272/j.issn.1671-251x.2018050088
    [4]ZHAO Qingchua. Design of carbon monoxide sensor based on wireless Mesh network technology[J]. Journal of Mine Automation, 2016, 42(7): 8-11. DOI: 10.13272/j.issn.1671-251x.2016.07.003
    [5]ZHANG Liya, MENG Qingyong, WEN Liang. Multi-channel allocation algorithm for wireless Mesh network in coal mine emergency rescue[J]. Journal of Mine Automation, 2015, 41(6): 83-86. DOI: 10.13272/j.issn.1671-251x.2015.06.020
    [6]GU Yidong. Application of wireless Mesh technology in communication system of coal mine working face[J]. Journal of Mine Automation, 2014, 40(12): 96-98. DOI: 10.13272/j.issn.1671-251x.2014.12.026
    [7]HUO Zhen-long, GU Ju. Research of Design of Coal Mine Emergency Rescue Communication System Based on Wireless Mesh Network[J]. Journal of Mine Automation, 2012, 38(11): 1-4.
    [8]LI Qi-wei, HUO Zhong-gang, WEN Liang, MENG Qing-yong, YAO Yong-hui, ZHANG Li-ya. Development of Coal Mine Emergency Rescue System Based on Wireless Mesh Network[J]. Journal of Mine Automation, 2012, 38(6): 39-43.
    [9]FU Yu-song. Application of Wireless Mesh Technology in Underground Emergency Communication System[J]. Journal of Mine Automation, 2012, 38(5): 93-96.
    [10]SONG Zheng-li. The Mode of Computing Meshes of Mine Safety Based on Web Service[J]. Journal of Mine Automation, 2005, 31(5): 63-65.
  • Cited by

    Periodical cited type(9)

    1. 田竹青. 基于BP混合优化的采煤机惯导定位方法研究. 矿业装备. 2025(01): 175-177 .
    2. 李磊,许春雨,宋建成,田慕琴,宋单阳,张杰,郝振杰,马锐. 基于PSO-ELM的综采工作面液压支架姿态监测方法. 工矿自动化. 2024(08): 14-19 . 本站查看
    3. 李俊杰,任博华,王海钢,延春明,李灯熬. 一种结合交互式多模型和自适应UKF的UWB/INS紧组合导航算法. 电子设计工程. 2023(08): 32-36+41 .
    4. 王晓铮,王亚慧,张成林. 基于惯性导航的管道探测蛇形机器人定位算法. 仪表技术与传感器. 2023(05): 84-89 .
    5. 程永红. 多信息融合技术的连续采煤机定位控制方法. 煤炭技术. 2023(07): 160-162 .
    6. 张福锁. 基于数据融合的井下连续采煤机自动定位方法的研究. 自动化应用. 2023(14): 180-182 .
    7. 张化乾,徐鹏鹏,李海润,王宾,宫三朋,马迅,王晨晨,姚世杰,王明明,杨洋,陈璨,菅典建. 利用红外与轴编码器联合的采煤机精准定位校准方法与试验分析. 能源与环保. 2023(10): 213-219 .
    8. 郁露,唐超礼,黄友锐,韩涛,徐善永,付家豪. 基于UWB和IMU的煤矿机器人紧组合定位方法研究. 工矿自动化. 2022(12): 79-85 . 本站查看
    9. 朱敏,马振,王俊玮,陈熙源. 基于联邦自适应滤波的分布式传递对准方法. 导航定位与授时. 2022(06): 92-100 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (102) PDF downloads (11) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return