LU Guoju, SHI Wenfang. Dynamic route planning for emergency escape in coal mines using a Dijkstra-ACO hybrid algorithm[J]. Journal of Mine Automation,2024,50(10):147-151, 178. DOI: 10.13272/j.issn.1671-251x.2024020050
Citation: LU Guoju, SHI Wenfang. Dynamic route planning for emergency escape in coal mines using a Dijkstra-ACO hybrid algorithm[J]. Journal of Mine Automation,2024,50(10):147-151, 178. DOI: 10.13272/j.issn.1671-251x.2024020050

Dynamic route planning for emergency escape in coal mines using a Dijkstra-ACO hybrid algorithm

More Information
  • Received Date: February 27, 2024
  • Revised Date: October 10, 2024
  • Available Online: August 01, 2024
  • Emergency escape route planning in coal mines must adapt promptly to the changing underground environment. Traditional methods, relying on static networks with fixed weights, lack the flexibility needed for real-time adjustments in response to dynamic underground conditions. To address this limitation, a dynamic route planning approach for coal mine emergency escape was proposed using a Dijkstra-ACO (ant colony optimization) hybrid algorithm. By analyzing the impacts of tunnel slope and water level on escape routes, an optimal route dynamic planning model for emergency escape in coal mines was developed. This model allowed for real-time adjustment of escape routes based on environmental changes in tunnel slope and water level, thereby improving escape efficiency and safety. The Dijkstra-ACO hybrid algorithm was employed to obtain the optimal route model, where the Dijkstra algorithm was used for rapid identification of an initial route, while the ACO algorithm refined the result to find the shortest and safest escape route, ensuring adaptability to environmental changes. A simulated coal mine environment was constructed, modeling various tunnel types and parameters, including slope, water level, to test the dynamic route planning approach. Results showed that in three test areas of varying sizes, i.e., 50 m×100 m, 100 m×200 m, and 150 m×250 m, the routes generated by the Dijkstra-ACO hybrid algorithm were over 19% shorter compared to those from the A* algorithm and modified ACO algorithm, with an obstacle avoidance improvement of over 5%.
  • [1]
    孙齐,卞强,童余德. 基于地磁匹配辅助导航的改进A*算法路径规划[J]. 江苏大学学报(自然科学版),2023,44(6):696-703. DOI: 10.3969/j.issn.1671-7775.2023.06.011

    SUN Qi,BIAN Qiang,TONG Yude. Path planning of improved A* algorithm based on geomagnetic matching aided navigation[J]. Journal of Jiangsu University (Natural Science Edition),2023,44(6):696-703. DOI: 10.3969/j.issn.1671-7775.2023.06.011
    [2]
    王鹏,朱希安,王占刚,等. 基于改进萤火虫算法的矿井水害避灾路径规划[J]. 中国矿业,2021,30(6):106-111.

    WANG Peng,ZHU Xi'an,WANG Zhangang,et al. Disaster avoidance path planning for mine floor based on improved firefly algorithm[J]. China Mining Magazine,2021,30(6):106-111.
    [3]
    黄昕,靳健,林作忠,等. 基于A*算法的深部地下空间火灾疏散路径动态规划[J]. 北京工业大学学报,2021,47(7):702-709.

    HUANG Xin,JIN Jian,LIN Zuozhong,et al. Dynamic evacuation path planning for fire disaster of deep underground space based on A* algorithm[J]. Journal of Beijing University of Technology,2021,47(7):702-709.
    [4]
    曹祥红,杜薇,魏晓鸽,等. 一种用于火灾疏散路径动态规划的算法[J]. 消防科学与技术,2022,41(9):1237-1242. DOI: 10.3969/j.issn.1009-0029.2022.09.014

    CAO Xianghong,DU Wei,WEI Xiaoge,et al. An algorithm for fire evacuation path dynamic planning[J]. Fire Science and Technology,2022,41(9):1237-1242. DOI: 10.3969/j.issn.1009-0029.2022.09.014
    [5]
    于丹,颜伟. 煤矿井下避灾路径规划研究综述[J]. 中国煤炭,2022,48(2):40-47. DOI: 10.3969/j.issn.1006-530X.2022.02.007

    YU Dan,YAN Wei. Research overview on underground escape path planning in coal mine[J]. China Coal,2022,48(2):40-47. DOI: 10.3969/j.issn.1006-530X.2022.02.007
    [6]
    朱军,佘平,李维炼,等. 基于导航网格的室内火灾逃生路径动态规划[J]. 西南交通大学学报,2020,55(5):1103-1110.

    ZHU Jun,SHE Ping,LI Weilian,et al. Dynamic planning method for indoor-fire escape path based on navigation grid[J]. Journal of Southwest Jiaotong University,2020,55(5):1103-1110.
    [7]
    丁莹莹,卜昌森,连会青,等. 基于仿真平台的矿井突水淹没路径和逃生路径规划[J]. 煤矿安全,2023,54(5):20-26.

    DING Yingying,BU Changsen,LIAN Huiqing,et al. Mine water inrush path and escape path planning based on simulation platform[J]. Safety in Coal Mines,2023,54(5):20-26.
    [8]
    符强,宁永科,纪元法,等. 基于改进RRT与DWA融合算法的路径规划[J]. 计算机仿真,2023,40(7):429-435. DOI: 10.3969/j.issn.1006-9348.2023.07.082

    FU Qiang,NING Yongke,JI Yuanfa,et al. Path planning based on improved RRT and DWA fusion algorithm[J]. Computer Simulation,2023,40(7):429-435. DOI: 10.3969/j.issn.1006-9348.2023.07.082
    [9]
    朱佳莹,高茂庭. 融合粒子群与改进蚁群算法的AUV路径规划算法[J]. 计算机工程与应用,2021,57(6):267-273. DOI: 10.3778/j.issn.1002-8331.2008-0243

    ZHU Jiaying,GAO Maoting. AUV path planning based on particle swarm optimization and improved ant colony optimization[J]. Computer Engineering and Applications,2021,57(6):267-273. DOI: 10.3778/j.issn.1002-8331.2008-0243
    [10]
    廖慧敏,朱宇倩,陈子鹏. 一种基于Dijkstra算法的火灾动态疏散指示系统[J]. 安全与环境学报,2021,21(4):1676-1683.

    LIAO Huimin,ZHU Yuqian,CHEN Zipeng. A fire disaster dynamic evacuation indicating system based on the Dijkstra algorithm[J]. Journal of Safety and Environment,2021,21(4):1676-1683.
    [11]
    左松涛,毛占利,范传刚,等. 基于地铁站场景的改进型Dijkstra算法疏散路径规划研究[J]. 铁道科学与工程学报,2023,20(5):1624-1635.

    ZUO Songtao,MAO Zhanli,FAN Chuangang,et al. Evacuation path planning based on improved Dijkstra algorithm in metro station scene[J]. Journal of Railway Science and Engineering,2023,20(5):1624-1635.
    [12]
    赵娜,陈越峰. 联合势场与蚁群算法的机器人路径规划[J]. 火力与指挥控制,2021,46(7):39-44. DOI: 10.3969/j.issn.1002-0640.2021.07.008

    ZHAO Na,CHEN Yuefeng. Robot path planning algorithm based on combination of improved potential field and ant colony algorithm[J]. Fire Control & Command Control,2021,46(7):39-44. DOI: 10.3969/j.issn.1002-0640.2021.07.008
    [13]
    张飞凯,黄永忠,李连茂,等. 基于Dijkstra算法的货运索道路径规划方法[J]. 山东大学学报(工学版),2022,52(6):176-182.

    ZHANG Feikai,HUANG Yongzhong,LI Lianmao,et al. Planning method of freight ropeway path based on Dijkstra algorithm[J]. Journal of Shandong University (Engineering Science),2022,52(6):176-182.
    [14]
    李文倩,周到洋,郑媛媛. 基于Dijkstra算法的地震灾害应急避难路径分析[J]. 地震研究,2022,45(4):653-661.

    LI Wenqian,ZHOU Daoyang,ZHENG Yuanyuan. Analysis on emergency evacuation route of the earthquake disaster based on the Dijkstra algorithm[J]. Journal of Seismological Research,2022,45(4):653-661.
    [15]
    任腾,罗天羽,李姝萱,等. 面向冷链物流配送路径优化的知识型蚁群算法[J]. 控制与决策,2022,37(3):545-554.

    REN Teng,LUO Tianyu,LI Shuxuan,et al. Knowledge based ant colony algorithm for cold chain logistics distribution path optimization[J]. Control and Decision,2022,37(3):545-554.
    [16]
    张志伟,马小平,白亚腾,等. 基于改进OpenPlanner算法的移动机器人局部路径规划[J]. 工矿自动化,2023,49(12):40-46.

    ZHANG Zhiwei,MA Xiaoping,BAI Yateng,et al. Local path planning for mobile robots based on improved OpenPlanner algorithm[J]. Journal of Mine Automation,2023,49(12):40-46.
    [17]
    江辉仙,郝志兵. 洪涝演进中多目标应急避险路径算法优化及其应用[J]. 灾害学,2022,37(2):64-70. DOI: 10.3969/j.issn.1000-811X.2022.02.012

    JIANG Huixian,HAO Zhibing. Sample application and optimization of network path algorithms based on multi-objective programming in flood evolution[J]. Journal of Catastrophology,2022,37(2):64-70. DOI: 10.3969/j.issn.1000-811X.2022.02.012
    [18]
    胡小兵,袁莉燕,李航,等. 基于涟漪扩散算法的应急疏散路径优化方法研究[J]. 交通运输系统工程与信息,2024,24(1):253-261.

    HU Xiaobing,YUAN Liyan,LI Hang,et al. Optimization of emergency evacuation route based on ripple-spreading algorithm[J]. Journal of Transportation Systems Engineering and Information Technology,2024,24(1):253-261.
    [19]
    康文文,桂海霞. 基于改进鲸鱼算法的无人车应急物资配送路径优化[J]. 湖北民族大学学报(自然科学版),2023,41(2):266-274.

    KANG Wenwen,GUI Haixia. Optimization of unmanned vehicle emergency supplies distribution based on improved whale algorithm[J]. Journal of Hubei Minzu University (Natural Science Edition),2023,41(2):266-274.
    [20]
    张明新,王月春,刘延锋,等. 基于混合遗传算法的应急物资配送路径优化[J]. 物流技术,2022,41(12):69-73. DOI: 10.3969/j.issn.1005-152X.2022.12.014

    ZHANG Mingxin,WANG Yuechun,LIU Yanfeng,et al. Optimization of emergency supply distribution route based on hybrid genetic algorithm[J]. Logistics Technology,2022,41(12):69-73. DOI: 10.3969/j.issn.1005-152X.2022.12.014
    [21]
    赵建有,肖宇,朱欣媛,等. 考虑需求紧迫度的应急车辆路径优化方法[J]. 哈尔滨工业大学学报,2022,54(9):27-34.

    ZHAO Jianyou,XIAO Yu,ZHU Xinyuan,et al. Route optimization method for emergency vehicles considering demand urgency[J]. Journal of Harbin Institute of Technology,2022,54(9):27-34.
  • Related Articles

    [1]LIU Yubing, LI Yiteng, LI Zhonghui, YIN Shan, JING Chao, LI Kai, LI Zhenxing, ZHAO Shenglei, LIU Chengfei. Research on the integrated "cloud-edge-end" intelligent and precise management and control technology system for coal mine disasters[J]. Journal of Mine Automation, 2025, 51(3): 105-112, 164. DOI: 10.13272/j.issn.1671-251x.2024110084
    [2]HE Qiao. Coal mine disaster integration management and control platform based on unified digital base[J]. Journal of Mine Automation, 2024, 50(11): 109-117. DOI: 10.13272/j.issn.1671-251x.2024080025
    [3]PAN Wenlong, LI Shengjun, GAO Quanjun, YANG Luyu, LIU Qingfu, ZHANG Heming. Research on information model of coal mine fully mechanized mining equipment based on industrial Internet[J]. Journal of Mine Automation, 2024, 50(5): 84-92. DOI: 10.13272/j.issn.1671-251x.2024010022
    [4]YIN Jianhui. Design of coal mine gas intelligent extraction control system based on industrial Internet architecture[J]. Journal of Mine Automation, 2024, 50(2): 28-34. DOI: 10.13272/j.issn.1671-251x.2023080030
    [5]WANG Yao. Research on information technology for underground coal mine based on 5G industrial Internet[JP][J]. Journal of Mine Automation, 2023, 49(S1): 29-31.
    [6]ZHANG Xiao. Construction of intelligent comprehensive control platform for Pingzhuang Coal Industry[J]. Journal of Mine Automation, 2023, 49(S1): 7-11.
    [7]XING Zhen. Global dynamic collaborative management and control of diversified business in coal mines driven by digital twins[J]. Journal of Mine Automation, 2023, 49(7): 60-66, 82. DOI: 10.13272/j.issn.1671-251x.2023060003
    [8]YANG Jun, ZHANG Chao, YANG Huifan, GUO Yinan. Research summary on coal industry internet technology[J]. Journal of Mine Automation, 2023, 49(4): 23-32. DOI: 10.13272/j.issn.1671-251x.18081
    [9]JING Haixiang, HUANG Yourui, XU Shanyong, TANG Chaoli. Research on the predictive fault diagnosis of mine ventilator based on digital twin and probabilistic neural network[J]. Journal of Mine Automation, 2021, 47(11): 53-60. DOI: 10.13272/j.issn.1671-251x.17852
    [10]YU Guo-fang, LI Ming, HUA Gang. Research of the Application of Industry Controlling Configuration Based on Internet Technology in Coal Enterprise[J]. Journal of Mine Automation, 2000, 26(6): 41-43.
  • Cited by

    Periodical cited type(12)

    1. 邓军, 刘登祯. 煤自燃监测预警技术研究进展及展望. 工矿自动化. 2025(07) 本站查看
    2. 陈宇飞,龚星宇,夏敏高. 密闭采空区煤自燃风险隐患预警系统设计研究. 内蒙古煤炭经济. 2024(12): 1-3 .
    3. 翟小伟,王辰,郝乐,李心田,侯钦元,马腾. 基于ACO-KELM的采空区遗煤温度预测模型研究. 工矿自动化. 2024(12): 128-135 . 本站查看
    4. 王凯,韩涛,和运中. 风量影响下的煤自燃定量预测预报指标试验研究. 西安科技大学学报. 2022(01): 16-21 .
    5. 王杨,胡泊,董天文. 基于神经网络的密闭采空区煤自燃预警. 沈阳航空航天大学学报. 2022(05): 77-83 .
    6. 王月红,周宁,张九零,朱壮. 不同煤种自燃指标气体优化研究. 河南理工大学学报(自然科学版). 2020(06): 10-15 .
    7. 张成武. 阳煤集团三矿K8302工作面防火技术实践. 现代矿业. 2020(08): 222-224 .
    8. 赵建斌. 皇后煤矿15105综放工作面启封技术及应用. 现代矿业. 2020(08): 217-219 .
    9. 景巨栋,王凯,韩涛. 羊场湾矿2号煤层自燃指标气体及其阈值研究. 能源与环保. 2020(12): 24-28 .
    10. 岳宁芳,金彦,孙明福,杨程帆,冉学超,程明. 基于多指标气体的煤自燃进程分级预警研究. 安全与环境学报. 2020(06): 2139-2146 .
    11. 屈世甲,安世岗,武福生,李鹏. 大采高综采工作面采空区自燃“三带”研究. 工矿自动化. 2019(05): 22-25 . 本站查看
    12. 翟小伟,成倬. 柴家沟矿4~(-2)煤层自燃标志气体优选实验研究. 煤矿安全. 2019(11): 18-23 .

    Other cited types(1)

Catalog

    Corresponding author: SHI Wenfang, 674618662@qq.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (135) PDF downloads (25) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return