Citation: | WANG Guofeng, WANG Shoujun, TAO Rongying, et al. Research on visual recognition technology for appearance defects of steel wire rope in mine hoist[J]. Journal of Mine Automation,2024,50(5):28-35. DOI: 10.13272/j.issn.1671-251x.2024010080 |
[1] |
朱真才,李翔,沈刚,等. 双绳缠绕式煤矿深井提升系统钢丝绳张力主动控制方法[J]. 煤炭学报,2020,45(1):464-473.
ZHU Zhencai,LI Xiang,SHEN Gang,et al. Wire rope tension active control of double-rope winding deep well hoisting systems[J]. Journal of China Coal Society,2020,45(1):464-473.
|
[2] |
李腾宇,寇子明,吴娟,等. 超千米深井提升机可视化监测系统应用[J]. 煤炭学报,2020,45(增刊2):1069-1078.
LI Tengyu,KOU Ziming,WU Juan,et al. Monitoring system of the hoist in the over kilometer deep shaft[J]. Journal of China Coal Society,2020,45(S2):1069-1078.
|
[3] |
王红尧,田劼,张艳林,等. 矿用钢丝绳在线监测教学实验装置关键技术[J]. 煤矿安全,2021,52(6):177-182.
WANG Hongyao,TIAN Jie,ZHANG Yanlin,et al. Key technologies of teaching experimental device for on line inspection of mining wire rope[J]. Safety in Coal Mines,2021,52(6):177-182.
|
[4] |
ZHANG Guoyang,TANG Zhaohui,FAN Ying,et al. Steel wire rope surface defect detection based on segmentation template and spatiotemporal gray sample set[J]. Sensors,2021,21(16). DOI: 10.3390/s21165401.
|
[5] |
ZHOU Ping,ZHOU Gongbo,HE Zhenzhi,et al. A novel texture-based damage detection method for wire ropes[J]. Measurement,2019,148(12). DOI: 10.1016/j.measurement.2019.106954.
|
[6] |
刘钰,康爱国,李良辉,等. 基于TMR传感器的矿用钢丝绳断丝缺陷检测系统[J]. 煤矿安全,2019,50(5):122-125.
LIU Yu,KANG Aiguo,LI Lianghui,et al. Broken wire defect detection system in mine wire rope based on TMR sensor[J]. Safety in Coal Mines,2019,50(5):122-125.
|
[7] |
田劼,田壮,郭红飞,等. 矿用钢丝绳损伤检测磁通回路优化设计[J]. 工矿自动化,2022,48(3):118-122.
TIAN Jie,TIAN Zhuang,GUO Hongfei,et al. Optimization design of magnetic flux circuit for mine wire rope damage detection[J]. Journal of Mine Automation,2022,48(3):118-122.
|
[8] |
叶辉,乔铁柱. 矿用钢丝绳在线检测系统[J]. 煤矿安全,2018,49(8):131-134.
YE Hui,QIAO Tiezhu. Research on on-line detection system of mine wire rope[J]. Safety in Coal Mines,2018,49(8):131-134.
|
[9] |
李金华,夏黎明. 图像识别技术在矿用钢丝绳检测中的应用[J]. 山西焦煤科技,2022,46(4):16-18,21. DOI: 10.3969/j.issn.1672-0652.2022.04.005
LI Jinhua,XIA Liming. Application of image recognition technology in mining wire rope detection[J]. Shanxi Coking Coal Science & Technology,2022,46(4):16-18,21. DOI: 10.3969/j.issn.1672-0652.2022.04.005
|
[10] |
姜泓宇,董增寿,贺之靖. 基于机器视觉的钢丝绳表面缺陷检测[J]. 太原科技大学学报,2023,44(5):434-439,446.
JIANG Hongyu,DONG Zengshou,HE Zhijing. Surface defect detection of wire rope based on feature fusion and IWOA-SVM[J]. Journal of Taiyuan University of Science and Technology,2023,44(5):434-439,446.
|
[11] |
刘晓磊,吴国群,阚哲. 基于深度学习的煤矿钢丝绳缺损检测方法研究[J]. 煤炭工程,2023,55(11):148-153.
LIU Xiaolei,WU Guoqun,KAN Zhe. Research on defect detection method of coal mine wire rope based on deep learning[J]. Coal Engineering,2023,55(11):148-153.
|
[12] |
吴东,张宝金,刘伟新,等. 强噪声背景下钢丝绳损伤信号降噪方法[J]. 工矿自动化,2022,48(1):58-63.
WU Dong,ZHANG Baojin,LIU Weixin,et al. Noise reduction method for wire rope damage signal under strong noise background[J]. Industry and Mine Automation,2022,48(1):58-63.
|
[13] |
阮顺领,刘丹洋,白宝军,等. 基于自适应MSRCP算法的煤矿井下图像增强方法[J]. 矿业研究与开发,2021,41(11):186-192.
RUAN Shunling,LIU Danyang,BAI Baojun,et al. Image enhancement method for underground coal mine based on the adaptive MSRCP algorithm[J]. Mining Research and Development,2021,41(11):186-192.
|
[14] |
朱海平. 矿井提升钢丝绳表面损伤在线视觉检测系统研究[D]. 徐州:中国矿业大学,2023.
ZHU Haiping. Research on online visual detection system for surface damage of mine hoisting wire rope[D]. Xuzhou:China University of Mining and Technology,2023.
|
[15] |
郭永坤,朱彦陈,刘莉萍,等. 空频域图像增强方法研究综述[J]. 计算机工程与应用,2022,58(11):23-32.
GUO Yongkun,ZHU Yanchen,LIU Liping,et al. Research review of space-frequency domain image enhancement methods[J]. Computer Engineering and Applications,2022,58(11):23-32.
|
[16] |
BHATT P M,MALHAN R K,RAJENDRAN P,et al. Image-based surface defect detection using deep learning[J]. Journal of Computing and Information Science in Engineering,2021,21(4):1-23.
|
[17] |
HUANG Xinyuan,LIU Zhiliang,ZHANG Xiuyu,et al. Surface damage detection for steel wire ropes using deep learning and computer vision techniques[J]. Measurement,2020,161(12). DOI: 10.1016/j.measurement.2020.107843.
|
[18] |
李鑫. 基于机器视觉的钢丝绳直径在线检测方法研究[D] . 西安:西安石油大学,2023.
LI Xin. Research on online inspection method of wire rope diameter based on machine vision[D]. Xi'an:Xi'an Shiyou University,2023.
|
[19] |
LIU Shiwei,SUN Yanhua,KANG Yihua. A novel e-exponential stochastic resonance model and weak signal detection method for steel wire rope[J]. IEEE Transactions on Industrial Electronics,2022,69(7):7428-7440. DOI: 10.1109/TIE.2021.3095802
|
[20] |
赵文,薛涛,凡成华,等. 矿井提升机钢丝绳损伤在线检测方法研究[J]. 矿山机械,2022,50(6):22-26. DOI: 10.3969/j.issn.1001-3954.2022.06.006
ZHAO Wen,XUE Tao,FAN Chenghua,et al. Research on online detection method for damage of wire rope of mine hoist[J]. Mining & Processing Equipment,2022,50(6):22-26. DOI: 10.3969/j.issn.1001-3954.2022.06.006
|
[21] |
LIU Shiwei,CHEN Muchao. Wire rope defect recognition method based on MFL signal analysis and 1D-CNNs[J]. Sensors,2023,23(7). DOI: 10.3390/s23073366.
|
[22] |
CHANG X D,PENG Y X,ZHU Z C,et al. Tribological behavior and mechanical properties of transmission wire rope bending over sheaves under different sliding conditions[J]. Wear,2023(514/515). DOI: 10.1016/j.wear.2022.204582.
|
[1] | CHEN Zhiwen, CHEN Ailiangfei, TANG Xiaodan, KE Haobin, JIANG Zhaohui, XIAO Fei. YOLOv5s pruning method for edge computing of coal mine safety monitoring[J]. Journal of Mine Automation, 2024, 50(7): 89-97. DOI: 10.13272/j.issn.1671-251x.2024010095 |
[2] | XU Jun, ZHAO Xiaohu, HOU Nianqi, WANG Jie, LIU Yulin. A maintenance guidance system for coal mine electromechanical equipment based on improved YOLOv5s[J]. Journal of Mine Automation, 2024, 50(5): 151-156. DOI: 10.13272/j.issn.1671-251x.2023090069 |
[3] | YAN Bijuan, WANG Kaimin, GUO Pengcheng, ZHENG Xinxu, DONG Hao, LIU Yong. Research on coal gangue detection in coal preparation plant based on YOLOv5s-FSW model[J]. Journal of Mine Automation, 2024, 50(5): 36-43, 66. DOI: 10.13272/j.issn.1671-251x.2023100090 |
[4] | XU Ciqiang, JIA Yunhong, TIAN Yuan. Large block coal detection algorithm for fully mechanized working face based on MES-YOLOv5s[J]. Journal of Mine Automation, 2024, 50(3): 42-47, 141. DOI: 10.13272/j.issn.1671-251x.2024030009 |
[5] | HE Kai, CHENG Gang, WANG Xi, GE Qingnan, ZHANG Hui, ZHAO Dongyang. Research on coal gangue recognition method based on CED-YOLOv5s model[J]. Journal of Mine Automation, 2024, 50(2): 49-56, 82. DOI: 10.13272/j.issn.1671-251x.2023090065 |
[6] | HAO Mingyue, MIN Bingbing, ZHANG Xinjian, ZHAO Zuopeng, WU Chen, WANG Xin. A miner queue detection method based on improved YOLOv5s[J]. Journal of Mine Automation, 2023, 49(11): 160-166. DOI: 10.13272/j.issn.1671-251x.2023030058 |
[7] | ZHANG Hui, SU Guoyong, ZHAO Dongyang. Research on multi object detection in mining face based on FBEC-YOLOv5s[J]. Journal of Mine Automation, 2023, 49(11): 39-45. DOI: 10.13272/j.issn.1671-251x.2023060063 |
[8] | MIAO Changyun, SUN Dandan. Research on fault detection of belt conveyor drum based on improved YOLOv5s[J]. Journal of Mine Automation, 2023, 49(7): 41-48. DOI: 10.13272/j.issn.1671-251x.2022100039 |
[9] | ZHANG Xuhui, YAN Jianxing, ZHANG Chao, WAN Jicheng, WANG Lixin, HU Chengjun, WANG Li, WANG Dong. Coal block abnormal behavior identification based on improved YOLOv5s + DeepSORT[J]. Journal of Mine Automation, 2022, 48(6): 77-86, 117. DOI: 10.13272/j.issn.1671-251x.17915 |
[10] | SHEN Ke, JI Liang, ZHANG Yuanhao, ZOU Sheng. Research on coal and gangue detection algorithm based on improved YOLOv5s model[J]. Journal of Mine Automation, 2021, 47(11): 107-111. DOI: 10.13272/j.issn.1671-251x.17838 |
1. |
梁鹏翔, 何明剑, 李昂, 苗强. 钢丝绳损伤失效分析与检测技术综述. 人民黄河. 2025(S1)
![]() | |
2. |
张增彬. 煤矿主提升机钢丝绳张力及提升载荷监测系统设计研究. 机械管理开发. 2025(04): 196-198 .
![]() | |
3. |
毛清华,杨帆,王超,仝旭耀,童军伟,张旭辉,薛旭升. 基于改进YOLOv8n的矿用提升钢丝绳表面损伤图像识别. 工矿自动化. 2025(04): 100-106+152 .
![]() | |
4. |
周坪,王士豪,周公博,赵天驰,李煊瀚,闫晓东. 矿用钢丝绳双源磁回路结构设计与仿真分析. 工矿自动化. 2024(10): 135-146 .
![]() |