Citation: | YANG Yang, LI Haixiong, HU Miaolong, et al. Coal and gangue segmentation and recognition method based on YOLOv5-SEDC model[J]. Journal of Mine Automation,2024,50(8):120-126. DOI: 10.13272/j.issn.1671-251x.2024010078 |
[1] |
袁亮,张农,阚甲广,等. 我国绿色煤炭资源量概念、模型及预测[J]. 中国矿业大学学报,2018,47(1):1-8.
YUAN Liang,ZHANG Nong,KAN Jiaguang,et al. The concept,model and reserve forecast of green coal resources in China[J]. Journal of China University of Mining & Technology,2018,47(1):1-8.
|
[2] |
钱鸣高,许家林,王家臣. 再论煤炭的科学开采[J]. 煤炭学报,2018,43(1):1-13.
QIAN Minggao,XU Jialin,WANG Jiachen. Further on the sustainable mining of coal[J]. Journal of China Coal Society,2018,43(1):1-13.
|
[3] |
LI Jianping,DU Changlong,BAO Jianwei,et al. Direct-impact of sieving coal and gangue[J]. Mining Science and Technology,2010,20(4):611-614.
|
[4] |
DUAN Chenlong,ZHOU Chenyang,DONG Liang,et al. A novel dry beneficiation technology for pyrite recovery from high sulfur gangue[J]. Journal of Cleaner Production,2018,172(3):2475-2484.
|
[5] |
MOHANTA S,MEIKAP B C. Influence of mediumparticle size on the separation performance of an air dense medium fluidized bed separator for coal cleaning[J]. Journal of the South African Institute of Mining and Metallurgy,2015,115:761-766.
|
[6] |
李思维,常博,刘昆轮,等. 煤炭干法分选的发展与挑战[J]. 洁净煤技术,2021,27(5):32-37.
LI Siwei,CHANG Bo,LIU Kunlun,et al. Development and challenge of dry coal separation[J]. Clean Coal Technology,2021,27(5):32-37.
|
[7] |
曹现刚,李莹,王鹏,等. 煤矸石识别方法研究现状与展望[J]. 工矿自动化,2020,46(1):38-43.
CAO Xiangang,LI Ying,WANG Peng,et al. Research status of coal-gangue identification method and its prospect[J]. Industry and Mine Automation,2020,46(1):38-43.
|
[8] |
MCCOY J T,AURET L. Machine learning applications in minerals processing:a review[J]. Minerals Engineering,2019,132:95-109.
|
[9] |
LI Deyong,WANG Guofa ,ZHANG Yong,et al. Coal gangue detection and recognition algorithm based on deformable convolution YOLOv3[J]. IET Image Processing,2022,16(1):134-144.
|
[10] |
SONG Qingjun,LIU Zhijiang,JIANG Haiyan. Coal gangue detection method based on improved YOLOv5[C]. International Conference on Big Data,Artificial Intelligence and Internet of Things Engineering,Xi'an,2022. DOI: 10.1109/ICBAIE56435.2022.9985920.
|
[11] |
GUI Fangjun,YU Shuo,ZHANG Hailan,et al. Coal gangue recognition algorithm based on improved YOLOv5[C]. 2nd International Conference on Information Technology,Big Data and Artificial Intelligence,Chongqing,2021.DOI: 10.1109/ICIBA52610.2021.9687869.
|
[12] |
FU Chengcai,LU Fengli,ZHANG Guoying. Gradient- enhanced waterpixels clustering for coal gangue[J]. International Journal of Coal Preparation and Utilization,2023,43(4):677-690.
|
[13] |
LAI Wenhao,HU Feng,KONG Xixi,et al. The study of coal gangue segmentation for location and shape predicts based on multispectral and improved Mask R-CNN[J]. Powder Technology,2022,407. DOI: 10.1016/J.POWTEC.2022.117655.
|
[14] |
LYU Ziqi,WANG Weidong,ZHANG Kanghui,et al. A synchronous detection-segmentation method for oversized gangue on a coal preparation plant based on multi-task learning[J]. Minerals Engineering,2022,187. DOI: 10.1016/J.MINENG.2022.107806.
|
[15] |
TAGHANAKI S A,ABHISHEK K,COHEN J P,et al. Deep semantic segmentation of natural and medical images:a review[J]. Artificial Intelligence Review,2021,54(1):137-178.
|
[16] |
HAO Shijie,ZHOU Yuan,GUO Yanrong. A brief survey on semantic segmentation with deep learning[J]. Neurocomputing,2020,406:302-321.
|
[17] |
陈彪,卢兆林,代伟,等. 基于轻量化HPG−YOLOX−S模型的煤矸石图像精准识别[J]. 工矿自动化,2022,48(11):33-38.
CHEN Biao,LU Zhaolin,DAI Wei,et al. Accurate recognition of coal-gangue image based on lightweight HPG-YOLOX-S model[J]. Journal of Mine Automation,2022,48(11):33-38.
|
[18] |
郝俊峰,李玉涛,来博文. 基于YOLOv5−seg的多模型电石检测分割系统[J]. 现代计算机,2023,29(16):1-7,14. DOI: 10.3969/j.issn.1007-1423.2023.16.001
HAO Junfeng,LI Yutao,LAI Bowen. Multi-model calcium carbide detection and segmentationsystem based on YOLOv5−seg[J]. Modern Computer,2023,29(16):1-7,14. DOI: 10.3969/j.issn.1007-1423.2023.16.001
|
[19] |
许灿辉,史操,陈以农. 基于膨胀卷积网络的端到端文档语义分割[J]. 中南大学学报(英文版),2021,28(6):1765-1774.
XU Canhui,SHI Cao,CHEN Yinong. End-to-end dilated convolution network for document image semantic segmentation[J]. Journal of Central South University,2021,28(6):1765-1774.
|
[20] |
YU Fisher,KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]. International Conference on Learning Representation,Washington,2016. DOI: 10.48550/arXiv.1511.07122.
|
[21] |
饶中钰,吴景涛,李明. 煤矸石图像分类方法[J]. 工矿自动化,2020,46(3):69-73.
RAO Zhongyu,WU Jingtao,LI Ming. Coal-gangue image classification method[J]. Industry and Mine Automation,2020,46(3):69-73.
|
[22] |
FERNANDO P G,RACHEL S,SEBASTIEN O. TorchIO:a Python library for efficient loading,preprocessing,augmentation and patch-based sampling of medical images in deep learning[J]. Computer Methods and Programs in Biomedicine,2021,208. DOI: 10.1016/J.CMPB.2021.106236.
|
[23] |
赵杰,孙伟,徐中达,等. 基于形态学预处理的数字图像相关方法研究[J]. 实验力学,2022,37(5):629-637.
ZHAO Jie,SUN Wei,XU Zhongda,et al. Study on the method of digital image correlation based morphological pre-processing[J]. Journal of Experimental Mechanics,2022,37(5):629-637.
|
[1] | WANG Xia, MENG Guangrui. Underground pedestrian recognition algorithm based on convolutional neural network[J]. Journal of Mine Automation, 2024, 50(S2): 237-238,245. |
[2] | LI Zhihang. Application of convolutional networks in 5G network performance testing of open pit mines[J]. Journal of Mine Automation, 2024, 50(S2): 99-104. |
[3] | HAN Zhongli. Mining safety helmet wearing detection based on convolutional neural network[J]. Journal of Mine Automation, 2024, 50(S1): 82-87. |
[4] | QIN Yulong, CHENG Jiming, REN Yige, WANG Xiaoqing, ZHAO Qing, AN Cuijuan. Large coal detection for belt conveyors based on improved YOLOv5[J]. Journal of Mine Automation, 2024, 50(2): 57-62, 71. DOI: 10.13272/j.issn.1671-251x.2023080096 |
[5] | HE Kai, CHENG Gang, WANG Xi, GE Qingnan, ZHANG Hui, ZHAO Dongyang. Research on coal gangue recognition method based on CED-YOLOv5s model[J]. Journal of Mine Automation, 2024, 50(2): 49-56, 82. DOI: 10.13272/j.issn.1671-251x.2023090065 |
[6] | ZHENG Daoneng. An improved tiny YOLO v3 rapid recognition model for coal-gangue[J]. Journal of Mine Automation, 2023, 49(4): 113-119. DOI: 10.13272/j.issn.1671-251x.18079 |
[7] | ZHANG Shiru, HUANG Zongliu, ZHANG Yuanhao, ZHANG Ao, JI Liang. Coal and gangue recognition research based on improved YOLOv5[J]. Journal of Mine Automation, 2022, 48(11): 39-44. DOI: 10.13272/j.issn.1671-251x.2022060052 |
[8] | YOU Lei, ZHU Xinglin, CHEN Yu, LUO Minghua. Tear detection method of conveyor belt based on fully convolutional neural network[J]. Journal of Mine Automation, 2022, 48(9): 16-24. DOI: 10.13272/j.issn.1671-251x.2022040087 |
[9] | SHEN Ke, JI Liang, ZHANG Yuanhao, ZOU Sheng. Research on coal and gangue detection algorithm based on improved YOLOv5s model[J]. Journal of Mine Automation, 2021, 47(11): 107-111. DOI: 10.13272/j.issn.1671-251x.17838 |
[10] | DU Yun, ZHANG Lulu, PAN Tao. Miners' facial expression recognition method based on convolutional neural network[J]. Journal of Mine Automation, 2018, 44(5): 95-99. DOI: 10.13272/j.issn.1671-251x.17312 |
1. |
杨文宇,胡小刚,刘朝,张楷鑫,王嘉宇,上官星驰. 智慧矿山透明瓦斯地质系统平台构建与应用. 能源与环保. 2025(03): 39-45+52 .
![]() | |
2. |
贺炳伟,周明明,门少斌,张龙杰,李荣,李培煊,黄晓俊. 薄煤层井下主运巷道5G基站部署方案设计. 煤炭工程. 2025(03): 18-23 .
![]() | |
3. |
魏春贤,李涛,连昶锦. 时间敏感网络在煤矿的应用. 工矿自动化. 2024(S1): 65-68+99 .
![]() | |
4. |
侯录,闫晔,伍宪玉,侯江,赵连喜,高志,邱军军,刘玉明,伍玉娜,谢理,范亦铭. 铀矿井下无线网络技术适用性分析. 铀矿冶. 2024(03): 120-125 .
![]() | |
5. |
唐文明. 井下智能装备研究综述. 价值工程. 2024(30): 155-158 .
![]() | |
6. |
蒋栋. 基于5G技术的煤矿通信网络架构设计. 工矿自动化. 2024(S2): 96-98 .
![]() | |
7. |
张荣华. 5G通信技术在智能化煤矿中的应用研究. 低碳世界. 2023(11): 85-87 .
![]() | |
8. |
卓敏敏,赵立厂. 适应矿井线形空间的BLE多连接网络移动节点漫游通信方法. 煤矿机电. 2023(06): 10-14 .
![]() |