LI Zhongfei, FENG Shiyong, GUO Jun, et al. Lightweight safety helmet wearing detection fusing coordinate attention and multiscale feature[J]. Journal of Mine Automation,2023,49(11):151-159. DOI: 10.13272/j.issn.1671-251x.2023080123
Citation: LI Zhongfei, FENG Shiyong, GUO Jun, et al. Lightweight safety helmet wearing detection fusing coordinate attention and multiscale feature[J]. Journal of Mine Automation,2023,49(11):151-159. DOI: 10.13272/j.issn.1671-251x.2023080123

Lightweight safety helmet wearing detection fusing coordinate attention and multiscale feature

More Information
  • Received Date: August 30, 2023
  • Revised Date: November 20, 2023
  • Available Online: November 26, 2023
  • The existing algorithm for detecting the helmet wear by coal miners has the problem of difficulty in achieving a good balance between detection accuracy and speed. In order to solve the above problem, based on the YOLOv4 model, a lightweight model (M-YOLO) that integrates coordinate attention and multi-scale is proposed and applied in safety helmet wearing detection. This model replaces YOLOv4's feature extraction network CSPDarknet53 with a lightweight feature extraction network S-MobileNetV2 composed of a mixed coordinate attention module. It effectively improves the connection between features while reducing the number of related parameters. The model changes the parallel connection method in the original spatial pyramid pooling structure to serial connection. It effectively improves computational efficiency. The feature fusion network is improved by introducing shallow features with high-resolution and multi detail texture information. It effectively enhances the extraction of object features. Some convolutions in the original Neck structure are modified to deep separable convolutions, further reducing the model's parameter and computational complexity while ensuring detection precision. The experimental results show that compared with the YOLOv4 model, the mean average precision of the M-YOLO model is only reduced by 0.84%. But the computational complexity, parameter quantity, and model size are reduced by 74.5%, 72.8%, and 81.6%, respectively. The detection speed is improved by 53.4%. Compared to other models, the M-YOLO model achieves a good balance between accuracy and real-time performance, meeting the requirements of embedded loading and deployment on intelligent video surveillance terminals.
  • [1]
    方伟立,丁烈云. 工人不安全行为智能识别与矫正研究[J]. 华中科技大学学报(自然科学版),2022,50(8):131-135.

    FANG Weili,DING Lieyun. Artificial intelligence-based recognition and modification of workers' unsafe behavior[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2022,50(8):131-135.
    [2]
    程德强,钱建生,郭星歌,等. 煤矿安全生产视频AI识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349-365.

    CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349-365.
    [3]
    程德强,徐进洋,寇旗旗,等. 融合残差信息轻量级网络的运煤皮带异物分类[J]. 煤炭学报,2022,47(3):1361-1369.

    CHENG Deqiang,XU Jinyang,KOU Qiqi,et al. Lightweight network based on residual information for foreign body classification on coal conveyor belt[J]. Journal of China Coal Society,2022,47(3):1361-1369.
    [4]
    李琪瑞. 基于人体识别的安全帽视频检测系统研究与实现[D]. 成都:电子科技大学,2017.

    LI Qirui. A research and implementation of safety-helmet video detection system based on human body recognition[D]. Chengdu:University of Electronic Science and Technology of China,2017.
    [5]
    SUN Xiaoming,XU Kaige,WANG Sen,et al. Detection and tracking of safety helmet in factory environment[J]. Measurement Science and Technology,2021,32(10). DOI: 10.1088/1361-6501/ac06ff.
    [6]
    LI Tan,LYU Xinyue,LIAN Xiaofeng,et al. YOLOv4_Drone:UAV image target detection based on an improved YOLOv4 algorithm[J]. Computers & Electrical Engineering,2021,93(8). DOI: 10.1016/j.compeleceng.2021.107261.
    [7]
    徐守坤,王雅如,顾玉宛,等. 基于改进Faster RCNN的安全帽佩戴检测研究[J]. 计算机应用研究,2020,37(3):901-905.

    XU Shoukun,WANG Yaru,GU Yuwan,et al. Safety helmet wearing detection study based on improved Faster RCNN[J]. Application Research of Computers,2020,37(3):901-905.
    [8]
    WANG Xuanyu,NIU Dan,LUO Puxuan,et al. A safety helmet and protective clothing detection method based on improved-YoloV3[C]. Chinese Automation Congress,Shanghai,2020:5437-5441.
    [9]
    罗欣宇. 基于深度学习的工地安全防护检测系统[D]. 杭州:杭州电子科技大学,2020.

    LUO Xinyu. Construction site safety protection detection system based on deep learning[D]. Hangzhou:Hangzhou Dianzi University,2020.
    [10]
    梁思成. 基于卷积神经网络的安全帽检测研究[D]. 哈尔滨:哈尔滨工业大学,2021.

    LIANG Sicheng. Research on safety helmet wearing detection based on convolutional neural network[D]. Harbin:Harbin Institute of Technology,2021.
    [11]
    张培基. 工业监控视频中的安全服与安全帽检测方法研究[D]. 武汉:华中科技大学,2021.

    ZHANG Peiji. Research on detection methods of safety clothing and safety helmet in industrial surveillance video[D]. Wuhan:Huazhong University of Science and Technology,2021.
    [12]
    BOCHKOVSKIY A,WANG C Y,LIAO H Y M. YOLOv4:optimal speed and accuracy of object detection[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:9-12.
    [13]
    SANDLER M,HOWARD A,ZHU Menglong,et al. MobileNetV2:inverted residuals and linear bottlenecks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:4510-4520.
    [14]
    HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. DOI: 10.1109/TPAMI.2015.2389824
    [15]
    LIU Shu,QI Lu,QIN Haifang,et al. Path aggregation network for instance segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:8759-8768.
    [16]
    HOWARD A,SANDLER M,CHEN Bo,et al. Searching for MobileNetV3[C]. IEEE/CVF International Conference on Computer Vision,Seoul,2019:1314-1324.
    [17]
    HAN Kai,WANG Yunhe,TIAN Qi,et al. GhostNet:more features from cheap operations[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:1577-1586.
    [18]
    HU Jie,SHEN Li,SUN Gang. Squeeze-and-excitation networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:7132-7141.
    [19]
    WOO S H,PARK J Y,LEE J Y,et al. CBAM:convolutional block attention module[C]. European Conference on Computer Vision,Munich,2018:3-19.
    [20]
    HOU Qibin,ZHOU Daquan,FENG Jiashi. Coordinate attention for efficient mobile network design[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville,2021:13708-13717.
    [21]
    ZHANG Xiangyu,ZHOU Xinyu,LIN Mengxiao,et al. ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:6848-6856.
    [22]
    寇旗旗,黄绩,程德强,等. 基于语义融合的域内相似性分组行人重识别[J]. 通信学报,2022,43(7):153-162.

    KOU Qiqi,HUANG Ji,CHENG Deqiang,et al. Person re-identification with intra-domain similarity grouping based on semantic fusion[J]. Journal on Communications,2022,43(7):153-162.
    [23]
    CHENG Deqiang,CHEN Liangliang,LYU Chen,et al. Light-guided and cross-fusion U-Net for anti-illumination image super-resolution[J]. IEEE Transactions on Circuits and Systems for Video Technology,2022,32(12):8436-8449. DOI: 10.1109/TCSVT.2022.3194169
    [24]
    LIU Wei,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[C]. European Conference on Computer Vision,Amsterdam,2016:21-37.
    [25]
    TAN Mingxing,PANG Ruoming,QUOC V L. EfficientDet:scalable and efficient object detection[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:10781-10790.
    [26]
    REN Shaoqing,HE Kaiming,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. DOI: 10.1109/TPAMI.2016.2577031
    [27]
    DUAN Kaiwen,BAI Song,XIE Lingxi,et al. CenterNet:keypoint triplets for object detection[C]. IEEE/CVF International Conference on Computer Vision,Seoul,2019:6568-6577.
    [28]
    GE Zheng,LIU Songtao,WANG Feng,et al. YOLOX:exceeding YOLO series in 2021[EB/OL].[2023-08-03]. https://arxiv.org/abs/2107.08430.
    [29]
    NICOLAS C,FRANCISCO M,GABRIEL S,et al. End-to-end object detection with transformers[C]. European Conference on Computer Vision,Glasgow,2020:213-229.
    [30]
    WANG C Y,BOCHKOVSKIY A,LIAO H Y M. Scaled-YOLOv4:scaling cross stage partial network[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville,2021:13024-13033.
    [31]
    Ultralytics. YOLOv5[EB/OL]. [2023-08-12]. https://github.com/ultralytics/yolov5.
  • Related Articles

    [1]An Underground Safety Helmet Wearing Detection Method Based on Feature Enhancement and Context Awareness[J]. Journal of Mine Automation.
    [2]MA Tian, JIANG Mei, YANG Jiayi, ZHANG Jiehui, DING Xuhan. Recognition of violations in belt conveyor area based on multi-feature fusion for time-difference network[J]. Journal of Mine Automation, 2024, 50(7): 115-122. DOI: 10.13272/j.issn.1671-251x.2023080108
    [3]WANG Yu, YU Chunhua, CHEN Xiaoqing, SONG Jiawei. Recognition of unsafe behaviors of underground personnel based on multi modal feature fusion[J]. Journal of Mine Automation, 2023, 49(11): 138-144. DOI: 10.13272/j.issn.1671-251x.2023070055
    [4]ZHU Fuwen, HOU Zhihui, LI Mingzhen. Lightweight multi-scale cross channel attention coal flow detection network[J]. Journal of Mine Automation, 2023, 49(8): 100-105. DOI: 10.13272/j.issn.1671-251x.2023030045
    [5]WANG Heng, LI Zhonghui, ZHANG Xin, LEI Yueyu. Study on the features of coal rock failure potential signal based on multiscale multifractal analysis method[J]. Journal of Mine Automation, 2023, 49(7): 99-106. DOI: 10.13272/j.issn.1671-251x.2022120003
    [6]HUO Yuehua, ZHAO Faqi, WU Wenhao. Multi-feature fusion based encrypted malicious traffic detection method for coal mine network[J]. Journal of Mine Automation, 2022, 48(7): 142-148. DOI: 10.13272/j.issn.1671-251x.17944
    [7]YE Ou, DOU Xiaoyi, FU Yan, DENG Jun. Coal block detection method integrating lightweight network and dual attention mechanism[J]. Journal of Mine Automation, 2021, 47(12): 75-80. DOI: 10.13272/j.issn.1671-251x.2021030075
    [8]WU Chuanlong, CHEN Wei, LIU Xiaowen, SHI Xinguo, LIU Ke, REN Xiaohong. Feature fusion based fault diagnosis of hoist inverter[J]. Journal of Mine Automation, 2021, 47(5): 46-51. DOI: 10.13272/j.issn.1671-251x.17772
    [9]ZHAI Guodong, REN Cong, WANG Shuai, YUE Zhongwen, PAN Tao, JI Rujia. Object detection model of coal mine rescue robot based on multi -scale feature fusio[J]. Journal of Mine Automation, 2020, 46(11): 54-58. DOI: 10.13272/j.issn.1671 -251x.2020050033
    [10]MA Hailong. Bearing residual life prediction based on principal component feature fusion and SVM[J]. Journal of Mine Automation, 2019, 45(8): 74-78. DOI: 10.13272/j.issn.1671-251x.2019010085
  • Cited by

    Periodical cited type(6)

    1. 许谨辉,王文善,王爽,王文钺,赵婷婷. 基于DYCS-YOLOv8n的井下无人驾驶电机车多目标检测. 工矿自动化. 2025(04): 86-92+130 . 本站查看
    2. 苗作华,李苗苗,徐厚友,王梦婷,严蔚涵,陈勇. 面向煤矿井下场景的安全帽佩戴检测算法. 安全与环境学报. 2025(05): 1743-1751 .
    3. 曹浪,王刚. 轻量级煤矿人员安全帽佩戴检测模型构建. 安全. 2025(05): 34-39 .
    4. 盖勇刚. 基于坐标注意力机制的轻量级安全帽佩戴检测. 南京信息工程大学学报. 2025(03): 315-327 .
    5. 韩忠利. 基于卷积神经网络的矿用安全帽佩戴检测. 工矿自动化. 2024(S1): 82-87 . 本站查看
    6. 刘飞,刘明辉,张乐群,王飞骅. 基于残差网络的运煤皮带异物分类方法. 电子测量技术. 2024(17): 163-171 .

    Other cited types(5)

Catalog

    XU Feixiang

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (202) PDF downloads (42) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return