Processing math: 100%
LIU Weitao, LI Beibei, DU Yanhui, et al. Research on the recognition model of mine water inrush source based on improved SSA-BP neural network[J]. Journal of Mine Automation,2024,50(2):98-105, 115. DOI: 10.13272/j.issn.1671-251x.2023070101
Citation: LIU Weitao, LI Beibei, DU Yanhui, et al. Research on the recognition model of mine water inrush source based on improved SSA-BP neural network[J]. Journal of Mine Automation,2024,50(2):98-105, 115. DOI: 10.13272/j.issn.1671-251x.2023070101

Research on the recognition model of mine water inrush source based on improved SSA-BP neural network

More Information
  • Received Date: June 03, 2023
  • Revised Date: December 24, 2023
  • Available Online: February 29, 2024
  • The combination of machine learning and optimization algorithms has been widely applied in the recognition of mine water inrush sources. However, the data of water inrush samples is stochastic and the optimization algorithm is prone to getting stuck in local optima. Further research is needed to improve the model's generalization capability and jump out of local optima. In order to solve the above problems, an improved sparrow search algorithm (SSA) is proposed to optimize the BP neural network model for quantitative recognition of mine water inrush sources. Taking Yangcheng Coal Mine of Luneng Coal and Electricity Co., Ltd. as the research object, the hydrochemical characteristics of the coal mine water sample are analyzed through conventional ion concentration analysis and Piper three line diagram. It is preliminarily determined that the mine water comes from the Ordovician limestone aquifer and the three limestone aquifers. The Na++K+ concentration, Ca2+ concentration, Mg2+ concentration, HCO3 concentration, SO24 concentration, Cl concentration, mineralization degree, total hardness, and pH value are determined as the recognition indicators for water inrush source. The mine water inrush source recognition model is established based on an improved SSA-BP neural network. Firstly, the SSA parameters are set. Sine chaotic mapping is introduced to evenly distribute the sparrow population. Secondly, the sparrow population is updated by calculating fitness values, and a random walk strategy is introduced to perturb the current optimal individual. If the termination condition is met, the optimal BP neural network weight and threshold are obtained. Finally, based on the constructed BP neural network, the recognition results are output. The research results indicate the following points. ① The improved SSA-BP model has an recognition accuracy of 95.6% in the training set and 100% in the testing set. ② The comparison results of the improved SSA-BP neural network model with the BP neural network model and SSA-BP neural network model show that the BP neural network model has a misjudgment rate of 5/18, the SSA-BP neural network model has a misjudgment rate of 2/18, and the improved SSA-BP neural network model has a misjudgment rate of 0. After 10 iterations, it tends to stabilize and has the smallest error difference from the set target. The initial fitness value is the best, and the recognition results have high credibility. ③ Five sets of mine water samples from Yangcheng Coal Mine are inputted into the trained model as input layer data. The main sources of mine water samples are the Ordovician limestone aquifer, the three limestone aquifers, and the Shanxi formation aquifer. The results of model recognition are mutually confirmed with the conclusions of hydrochemical characteristic analysis, and precise segmentation is achieved.
  • [1]
    曾一凡,武强,赵苏启,等. 我国煤矿水害事故特征、致因与防治对策[J]. 煤炭科学技术,2023,51(7):1-14.

    ZENG Yifan,WU Qiang,ZHAO Suqi,et al. Characteristics,causes,and prevention measures of coal mine water hazard accidents in China[J]. Coal Science and Technology,2023,51(7):1-14.
    [2]
    王昱同,王皓,王甜甜,等. 蒙陕接壤区浅埋煤层矿井水水化学特征及来源分析[J]. 煤田地质与勘探,2023,51(4):85-94. DOI: 10.12363/issn.1001-1986.22.07.0553

    WANG Yutong,WANG Hao,WANG Tiantian,et al. Hydrochemical characteristics and source analysis of mine water in shallow coal seams in Shaanxi and Inner Mongolia contiguous area[J]. Coal Geology & Exploration,2023,51(4):85-94. DOI: 10.12363/issn.1001-1986.22.07.0553
    [3]
    范立民,马万超,常波峰,等. 榆神府矿区地下水水化学特征及形成机理[J]. 煤炭科学技术,2023,51(1):383-394.

    FAN Limin,MA Wanchao,CHANG Bofeng,et al. Hydrochemical characteristics and formation mechanism of groundwater in Yushenfu Mining Area[J]. Coal Science and Technology,2023,51(1):383-394.
    [4]
    刘伟韬,刘云娟,申建军. 基于模糊物元理论的深部开采底板突水安全性评价[J]. 山东科技大学学报(自然科学版),2014,33(3):25-31.

    LIU Weitao,LIU Yunjuan,SHEN Jianjun. Safety evaluation of floor water inrush in deep mining based on the fuzzy matter-element theory[J]. Journal of Shandong University of Science and Technology(Natural Science),2014,33(3):25-31.
    [5]
    WU Qiang,MU Wenping,XING Yuan,et al. Source discrimination of mine water inrush using multiple methods:a case study from the Beiyangzhuang Mine,Northern China[J]. Bulletin of Engineering Geology & the Environment,2017(78):469-482.
    [6]
    邵良杉,詹小凡. 基于IWOA−HKELM的矿井突水水源识别[J]. 中国安全科学学报,2019,29(9):113-118.

    SHAO Liangshan,ZHAN Xiaofan. Identification method of mine water inrush source based on IWOA-HKELM[J]. China Safety Science Journal,2019,29(9):113-118.
    [7]
    秋兴国,王瑞知,张卫国,等. 基于PCA−CRHJ模型的矿井突水水源判别[J]. 工矿自动化,2020,46(11):65-71.

    QIU Xingguo,WANG Ruizhi,ZHANG Weiguo,et al. Discrimination of mine inrush water source based on PCA-CRHJ model[J]. Industry and Mine Automation,2020,46(11):65-71.
    [8]
    LI Xiang,DONG Donglin,LIU Kun,et al. Identification of mine mixed water inrush source based on genetic algorithm and XGBoost algorithm:a case study of Huangyuchuan Mine[J]. Water,2022(14):2150-2167.
    [9]
    段李宏,戴磊,张金陵. 基于Fisher判别模型的煤层底板突水水源预测[J]. 工矿自动化,2022,48(4):128-134.

    DUAN Lihong,DAI Lei,ZHANG Jinling. Prediction of water inrush source of coal seam floor based on Fisher discriminant model[J]. Journal of Mine Automation,2022,48(4):128-134.
    [10]
    施龙青,曲兴玥,韩进. 黄土梁峁地貌矿井水水质时空变异评估与关键控制因子水源识别[J]. 煤田地质与勘探,2023,51(2):195-206. DOI: 10.12363/issn.1001-1986.22.12.0943

    SHI Longqing,QU Xingyue,HAN Jin. Evaluation on spatiaotemporal variations of mine water quality and water source identification based on key dominant factors in loess hilly and gully region[J]. Coal Geology & Exploration,2023,51(2):195-206. DOI: 10.12363/issn.1001-1986.22.12.0943
    [11]
    尹会永,周鑫龙,郎宁,等. 基于SSA优化的GA−BP神经网络煤层底板突水预测模型与应用[J]. 煤田地质与勘探,2021,49(6):175-185.

    YIN Huiyong,ZHOU Xinlong,LANG Ning,et al. Prediction model of water inrush from coal floor based on GA-BP neural network optimized by SSA and its application[J]. Coal Geology & Exploration,2021,49(6):175-185.
    [12]
    黄敏,毛岸,路世昌,等. 矿井突水水源识别的主成分分析−混沌麻雀搜索−RF模型[J]. 安全与环境学报,2023,23(8):2607-2614.

    HUANG Min,MAO An,LU Shichang,et al. Identification of mine water inrush source based on PCA-CSSA-RF model[J]. Journal of Safety and Environment,2023,23(8):2607-2614.
    [13]
    LI Qiang,SUI Wanghua. Risk evaluation of mine-water inrush based on principal component logistic regression analysis and an improved analytic hierarchy process[J]. Hydrogeology Journal,2021(29):1299-1311.
    [14]
    李海祥,曹志国,王路军,等. 台格庙矿区地下水水化学特征与演变规律研究[J]. 煤炭科学技术,2023,51(9):284-291.

    LI Haixiang,CAO Zhiguo,WANG Lujun,et al. Study on chemical characteristics and evolution law of groundwater in Taigemiao Mining Area[J]. Coal Science and Technology,2023,51(9):284-291.
    [15]
    曾一凡,梅傲霜,武强,等. 基于水化学场与水动力场示踪模拟耦合的矿井涌(突)水水源判识[J]. 煤炭学报,2022,47(12):4482-4494.

    ZENG Yifan,MEI Aoshuang,WU Qiang,et al. Source discrimination of mine water inflow or inrush using hydrochemical field and hydrodynamic field tracer simulation coupling[J]. Journal of China Coal Society,2022,47(12):4482-4494.
    [16]
    姜子豪,胡友彪,琚棋定,等. 矿井突水水源判别方法[J]. 工矿自动化,2020,46(4):28-33.

    JIANG Zihao,HU Youbiao,JU Qiding,et al. A discrimination method of mine water inrush source[J]. Industry and Mine Automation,2020,46(4):28-33.
    [17]
    闫鹏程,尚松行,张超银,等. 改进BP神经网络算法对煤矿水源的分类研究[J]. 光谱学与光谱分析,2021,41(7):2288-2293.

    YAN Pengcheng,SHANG Songxing,ZHANG Chaoyin,et al. Classification of coal mine water sources by improved BP neural network algorithm[J]. Spectroscopy and Spectral Analysis,2021,41(7):2288-2293.
    [18]
    XUE Jiankai,SHEN Bo. A novel swarm intelligence optimization approach:sparrow search algorithm[J]. Systems Science & Control Engineering,2020,8(1):22-34.
    [19]
    李光阳,潘家文,钱谦,等. 融合学习机制的多混沌麻雀搜索算法[J]. 计算机科学与探索,2023,17(5):1057-1074.

    LI Guangyang,PAN Jiawen,QIAN Qian,et al. Multi-chaotic sparrow search algorithm based on learning mechanism[J]. Journal of Frontiers of Computer Science and Technology,2023,17(5):1057-1074.
  • Related Articles

    [1]HUANG Chao, TANG Mingyun, WANG Lele, CAI Jianguo, YUAN Yanan. Migration and distribution patterns of cutting dust in a continuous mining face under ventilation disturbance[J]. Journal of Mine Automation, 2024, 50(10): 168-178. DOI: 10.13272/j.issn.1671-251x.2024080046
    [2]LI Changjie, XIN Chuangye, WANG Hao. Effects of air curtain dust control parameters on dust pollution in fully mechanized mining faces[J]. Journal of Mine Automation, 2024, 50(10): 160-167. DOI: 10.13272/j.issn.1671-251x.2024080054
    [3]JIA Nan. The influence of coal pore structure on gas desorption-diffusion-seepage process[J]. Journal of Mine Automation, 2024, 50(3): 122-130. DOI: 10.13272/j.issn.1671-251x.2023110076
    [4]GONG Xiaoyan, WANG Tianshu, CHEN Long, PEI Xiaoze, LI Xiangbin, ZHU Qianli, NIU Huming. Research on dust settlement under mixed air flow control in fully mechanized excavation face[J]. Journal of Mine Automation, 2024, 50(2): 106-115. DOI: 10.13272/j.issn.1671-251x.2023090022
    [5]ZHOU Quanchao, YANG Shengqiang, JIANG Xiaoyuan, SANG Naiwen. Research on dust distribution law and optimization of ventilation and dust reduction on fully mechanized heading face[J]. Journal of Mine Automation, 2019, 45(11): 70-74. DOI: 10.13272/j.issn.1671-251x.2019050026
    [6]QIN Zhu. Numerical simulation of dust concentration distribution in transfer site of belt conveyor[J]. Journal of Mine Automation, 2018, 44(7): 70-74. DOI: 10.13272/j.issn.1671-251x.2018010064
    [7]SU Heng, YANG Yong, CHEN Lianfang, ZHAO Jun. Research of influence of pressure and temperature on gas diffusion law[J]. Journal of Mine Automation, 2015, 41(2): 65-67. DOI: 10.13272/j.issn.1671-251x.2015.02.018
    [8]LI Dong-xiao. Discussion on Monitoring Technology of Coal Mine Dust[J]. Journal of Mine Automation, 2011, 37(4): 54-55.
    [9]RONG Rong. Design of Monitoring and Control System for Coal Dust[J]. Journal of Mine Automation, 2010, 36(1): 96-98.
    [10]ZHU Yu. Study on Computer Automatic Control of Diffuse Stove[J]. Journal of Mine Automation, 2002, 28(6): 16-18.
  • Cited by

    Periodical cited type(65)

    1. 王一飞, 陶珑, 王海稳, 廖成杰, 杨德松. 基于R2868型传感器的火焰信息传输系统. 自动化应用. 2025(10)
    2. 田新琦,蔡存军,瞿维迎,孟祥顺,路交通. 无线节点状态QC与资料品质关系研究与应用. 石油物探. 2024(04): 735-745 .
    3. 王立新,郭凰,杨佳宇,李爽,李储军,汪珂. 无线通信在结构健康监测系统的应用研究综述. 科学技术与工程. 2023(06): 2229-2241 .
    4. 李孟娇,孙彤,付建林,郭彬,张义伟. 基于LoRa技术的煤矿上隅角瓦斯监测系统设计. 机电工程技术. 2023(04): 236-239 .
    5. 曹现刚,张富强,史可欣. 基于ZigBee协议的矿用设备数据采集分站设计. 仪表技术与传感器. 2023(03): 65-70 .
    6. 杨军,张超,杨恢凡,郭一楠. 煤炭工业互联网技术研究综述. 工矿自动化. 2023(04): 23-32 . 本站查看
    7. 蒋鹏. 基于LoRa无线通信的煤矿矿井环境智能监测系统设计. 煤炭技术. 2023(07): 206-208 .
    8. 张孟魁. 巷道顶板离层动态监测系统的研发与应用. 能源技术与管理. 2023(05): 168-170 .
    9. 李彦廷,董飞,葛鲲鹏,蒋相余,王豪,赵子含,丰耀辉. 基于LoRa的矿工体征状态监测系统设计. 曲阜师范大学学报(自然科学版). 2023(04): 91-98 .
    10. 陈贤,周澍. 一种低功耗综采工作面人员定位系统设计. 煤矿安全. 2023(11): 218-221 .
    11. 张向阳,彭志豪,靳昊玥,侯钰慧,王帅,王雄. 基于LoRa与Socket的建筑能耗异构数据融合方法. 现代电子技术. 2022(06): 158-162 .
    12. 程晓涵,李宗吾,谢秉沁,阳辉,张涛,袁隆,赵林. 基于MEMS技术的矿用无线传感采集系统设计. 煤炭工程. 2022(03): 26-32 .
    13. 陈青. 无线节点式小孔径钻孔瓦斯抽采监测系统的研制. 工业仪表与自动化装置. 2022(03): 35-40 .
    14. 李萍丰,张金链,徐振洋,张兵兵,杨飞,李新. 基于LoRa物联的远程智能起爆系统研发. 金属矿山. 2022(07): 42-49 .
    15. 李华,王桂忠. 基于LoRa与CAN通信的液压支架压力传感器系统设计与试验. 煤矿机械. 2022(09): 18-21 .
    16. 乐强,张怀,袁久春,况伟,朱勇,何友才. 基于LoRa技术的节点仪监控系统研究. 石油管材与仪器. 2022(06): 32-37 .
    17. 赵贺,孙榕泽. 基于LoRa技术的机械设备监测终端设计. 自动化应用. 2022(08): 46-49+72 .
    18. 贺石锋,吴伶锡,陈亦昕,詹杰. 矿用机车嵌入式多功能遥控系统的设计与实现. 广州航海学院学报. 2022(04): 50-54 .
    19. 苗可彬,韩阳. LoRa射频芯片的无线激光甲烷传感器设计. 单片机与嵌入式系统应用. 2021(01): 61-64+68 .
    20. 谢铖. 基于LoRa技术的森林火灾预警与控制系统研究. 科技经济导刊. 2021(02): 25-26+70 .
    21. 周德胜. 基于LoRa的矿用无线通信系统设计. 煤矿安全. 2021(04): 170-173 .
    22. 严鸿鹏,胡可,胡龙源. Lora通信技术在故障指示器中的应用. 信息记录材料. 2021(03): 113-115 .
    23. 张文焱,韩立军,纪道荣,王生晖,初宗辉,杨庆禹. 发爆器与人员安全区闭锁系统设计与实现. 自动化技术与应用. 2021(05): 175-178 .
    24. 潘晓博. 基于LoRa的低功耗瓦斯浓度分布式监测系统设计. 工矿自动化. 2021(06): 103-108 . 本站查看
    25. 刘湛,张辉. 基于LoRa的电力数据采集系统设计与实现. 工业控制计算机. 2021(08): 23-25 .
    26. 皇甫姗姗,朱节中,杨再强,马玉翡. 中国温室环境控制研究进展. 中国农学通报. 2021(27): 125-131 .
    27. 朱海峰,杨锐. 基于LoRa技术的顶板监测系统的应用. 山东煤炭科技. 2021(09): 181-183 .
    28. 吴学兵. 基于LoRa技术的节点地震采集单元数据远传系统设计. 石油物探. 2021(S1): 1-4 .
    29. 张洪光,刘亭亭,吕秀莎,张莹,聂剑红,李青. 三维露天矿山场景中异构分簇组网协议研究. 工矿自动化. 2021(12): 68-74 . 本站查看
    30. 张新. 矿井无线数据传输现状分析与系统设计. 化工矿物与加工. 2020(01): 32-35+40 .
    31. 高鑫,凌强,张力,王世杰,许舒翔. 利用无线物联网技术实现智能电力计量. 信息技术. 2020(01): 163-166 .
    32. 谭爱平,刘春德,邓庆绪. 金属矿山风险监测物联网关键技术研究现状与发展趋势. 金属矿山. 2020(01): 26-36 .
    33. 张新. 基于SX1278的矿用低速远程监控通信平台研究. 矿业安全与环保. 2020(01): 70-74 .
    34. 马洋锦,付茂全,许志,李敬兆. 矿山信息物理融合系统多节点智联策略. 工矿自动化. 2020(03): 38-42+48 . 本站查看
    35. 陈晓晶. LoRa组网技术在胶带运输监控系统中的应用研究. 工矿自动化. 2020(04): 91-97 . 本站查看
    36. 薛光辉,赵贺,孙宗正. 基于LoRa技术的矿用无线复合传感器设计与实现. 煤炭工程. 2020(04): 166-170 .
    37. 杨洋,冯耀东,吕兆海,王九洲,赵振辉. 基于矿用4G网络实现DTU在煤矿基础层设备数据采集的应用. 能源科技. 2020(06): 19-22+30 .
    38. 文渊博,牛澳,毛夏煜,张桃靖,冯兴乐. 基于LoRa的分布式火灾监测报警系统的设计与实现. 物联网技术. 2020(08): 18-22+26 .
    39. 冯抒,廖忠智,王春雨. 基于LoRa的物联网茶叶溯源系统研究. 常州信息职业技术学院学报. 2020(04): 30-34 .
    40. 谢锦宣,张欢,葛烨明,赵宇轩,周严,王满意. 石化受限空间环境监测报警系统. 电子测量技术. 2020(17): 120-125 .
    41. 梁苗,邬凯,邵江,谢勇谋,蔡玮彬. LoRa技术在公路边坡监测中的应用研究. 地下空间与工程学报. 2020(S2): 1011-1016+1029 .
    42. 李起伟. 基于LoRa通信的无线液压支架压力传感器设计. 工矿自动化. 2020(12): 111-115 . 本站查看
    43. 吴玉厚,代业旭,赵德宏. LoRa技术在机械加工关键动态数据采集的应用研究. 组合机床与自动化加工技术. 2019(01): 134-137 .
    44. 张新. LoRa技术及其在煤矿中的应用分析. 煤炭工程. 2019(03): 79-82 .
    45. 张新. 基于LoRa技术的煤矿作业环境实时监测系统设计. 自动化仪表. 2019(03): 69-73 .
    46. 朱家骅,金光,江先亮. 基于低功耗广域物联网的旅游景区垃圾监测系统. 无线通信技术. 2019(01): 57-61 .
    47. 俞铭津,江莺,张梦琦,俞旭,段峥,许越. 基于物联网的电动车智能充电系统. 测控技术. 2019(05): 48-52 .
    48. 刁志刚,王宏宇. 基于LoRa的智能多级矿井监控终端设计. 煤矿机械. 2019(05): 180-182 .
    49. 郑贵林,汪体成. 基于LoRa的温室环境智能监控系统的设计. 江苏农业科学. 2019(10): 216-219 .
    50. 梁裕琪. 利用无线物联网技术实现智能电力计量. 电工技术. 2019(12): 91-93 .
    51. 李柏均. 一种瓦斯隧道掌子面环境参数无线监测装置的设计. 自动化与仪器仪表. 2019(08): 13-16 .
    52. 吴志远,张舸帆,张前咨. 无线通讯技术在工业自动化中的应用及发展. 软件. 2019(09): 188-191 .
    53. 韩团军,尹继武,赵增群,王楷. 基于LoRa技术的矿井数据监测系统的设计与研究. 现代电子技术. 2019(20): 160-163 .
    54. 李贵蔚. 智能电源管理系统的设计与实现. 福建电脑. 2019(10): 72-73 .
    55. 史发钊,尤星懿,李亚旋,刘淑婷. 基于LoRa的固定式罐道间距测量仪. 煤矿安全. 2018(09): 160-162 .
    56. 黄海飞. 基于LoRa无线通信方式的矿区作业设备运转参数在线监测系统. 煤矿机电. 2018(03): 98-100 .
    57. 何诚刚. 基于LoRa的无线监测系统设计. 山东农业大学学报(自然科学版). 2018(03): 528-530 .
    58. 江武志,罗玉文. 智慧校园之基于LoRa技术的环境检测分析系统. 物联网技术. 2018(04): 64-67 .
    59. 唐杰,刘星,宋林章,朱润平. 一种基于EFM32LGF330F256的无线LoRa仪表设计方案. 自动化博览. 2018(01): 74-76 .
    60. 郝大为. 矿井机电设备的安装与管理分析. 世界有色金属. 2018(14): 41+43 .
    61. 李光明,李海霞. LoRa通信技术在天然气井数据监测系统的应用. 电脑知识与技术. 2018(27): 237-240 .
    62. 曹霞,余笑,王家豪. 配电线路安全监测系统设计. 电视技术. 2018(09): 103-108+125 .
    63. 魏灵恩. LoRa通信技术在井下数据采集系统中的应用. 通信电源技术. 2018(09): 185-186 .
    64. 张新. 煤矿井下远程监控终端设计. 工矿自动化. 2018(12): 97-101 . 本站查看
    65. 宋延军,梁俊艳,王德志. 基于LoRa的10 kV架空线路故障监测系统设计与实现. 华北科技学院学报. 2017(05): 30-34 .

    Other cited types(42)

Catalog

    ZHAO Jiyuan

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (620) PDF downloads (37) Cited by(107)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return