XIA Dingchao, LYU Pin, DU Peng, et al. Factors influencing the dust-blocking effect of air curtains during the fully mechanized excavation of working faces[J]. Journal of Mine Automation,2024,50(1):72-79. DOI: 10.13272/j.issn.1671-251x.2023060007
Citation: XIA Dingchao, LYU Pin, DU Peng, et al. Factors influencing the dust-blocking effect of air curtains during the fully mechanized excavation of working faces[J]. Journal of Mine Automation,2024,50(1):72-79. DOI: 10.13272/j.issn.1671-251x.2023060007

Factors influencing the dust-blocking effect of air curtains during the fully mechanized excavation of working faces

More Information
  • Received Date: June 03, 2023
  • Revised Date: December 24, 2023
  • Available Online: January 30, 2024
  • Prevalent research on dust pollution during fully mechanized excavation has mainly focused on the impact of individual factors on the effectiveness of air curtains in fully mechanized excavation sites. However, scant research has been devoted to the interaction between factors, because of which pressure-induced air diversion technology has not been adequately applied to this context.To investigate the impact of the radial distance of the outlet of air, the ratio of this outlet, and the distance between the outlet and the wall-coated air duct on the effectiveness of dust blocking by air curtains, the authors of this study consider the excavation of the working face of the 810 west wing machine tunnel at the Pansan Mine . We used Fluent software to numerically simulate the distribution of wind flow and the diffusion of dust under a distance of the radial outlet of air of 10-25 m, a ratio of the outlet of 0.6-0.9, and an axial distance of the outlet of 6-12 m.The results showed that: ① As the distance of the radial outlet of air increased, the radial vortex air curtain transforms more fully in the tunnel . The wind flow at the front end of the excavation operator was more evenly distributed, and the wind speed was directed toward the working face such that this was more conducive to the formation of an axial dust-blocking air curtain.When the radial distance of the outlet of air was 10 m, vortical characteristics became apparent within a distance of 7 m from the working surface, and the direction of wind became disordered. When the radial distance of the air outlet was 25 m, the wind flow tended to be uniform within 7 m of the working surface, and its direction was evenly distributed toward the working surface. This led to the formation of an axial dust-blocking wind curtain that could cover the entire section.② As the ratio of the radial outlet of air increased, the volume of axial airflow of the rectifier air cylinder decreased to reduce the velocity of axial airflow and the intensity of the jet. This in turn reduced the disturbance caused by the axial airflow to that at the top of the mechanized working face that was being excavated. A higher ratio of the radial outlet of air was more conducive to the formation of an axial dust-blocking flow field, with the wind directed toward the working surface and covering the entire section. This led to an axial dust-blocking air curtain. ③ The dust-blocking ability of the radial vortical air curtain initially increased and then decreased as the ratio of the radial outlet of air increased. Its ability then continued to improve as the ratio was further increased. ④ We implemented the dust-control technology based on the air curtain with forced ventilation-induced diversion. When the pressure-induced volume of air was 300 m3/min and the volume of air suction was 400 m3/min, the distance between the radial outlet of air and the attached wall of the air duct was 20 m. The ratio of the radial outlet of air, and the distance between this outlet and the air duct of the rectifier was 8-10 m. The air curtain was able to collect dust near the port of the dust suction for efficient dust control and removal.We conducted an on-site test of the fully mechanized excavation working face of the 810 west wing machine tunnel. The empirically measured data of wind speed and dust mass concentration at measuring points and the results of numerical simulations were consistent with each other. Highly concentrated dust was blocked at the front end of the working face, and its isolation was noticeable. This confirms the effectiveness of the numerical simulations.
  • [1]
    龚晓燕,赵晓莹,杨富强,等. 综掘面尘源动态变化下粉尘场优化的风流调控研究[J]. 煤炭工程,2021,53(2):122-126.

    GONG Xiaoyan,ZHAO Xiaoying,YANG Fuqiang,et al. Wind flow control for optimization of dust field distribution under dynamic change of dust source in fully mechanized heading face[J]. Coal Engineering,2021,53(2):122-126.
    [2]
    秦翥. 带式输送机转载点粉尘浓度分布数值模拟[J]. 工矿自动化,2018,44(7):70-74.

    QIN Zhu. Numerical simulation of dust concentration distribution in transfer site of belt conveyor[J]. Industry and Mine Automation,2018,44(7):70-74.
    [3]
    龚晓燕,张浩,陈龙,等. 综掘面抽风口调控下的旋流风幕降尘优化[J]. 中国安全科学学报,2023,33(6):56-63.

    GONG Xiaoyan,ZHANG Hao,CHEN Long,et al. Optimization of cyclone air curtain dust control under control of exhaust outlet on fully mechanized excavation face[J]. China Safety Science Journal,2023,33(6):56-63.
    [4]
    程卫民,周刚,陈连军,等. 我国煤矿粉尘防治理论与技术20年研究进展及展望[J]. 煤炭科学技术,2020,48(2):1-20.

    CHENG Weimin,ZHOU Gang,CHEN Lianjun,et al. Research progress and prospect of dust control theory and technology in China's coal mines in the past 20 years[J]. Coal Science and Technology,2020,48(2):1-20.
    [5]
    吕英华,察兴鹏,聂文,等. 基于数值模拟的喷雾装置粉尘抑制研究[J]. 煤矿机械,2022,43(11):34-37.

    LYU Yinghua,CHA Xingpeng,NIE Wen,et al. Study on dust suppression of spray device based on numerical simulation[J]. Coal Mine Machinery,2022,43(11):34-37.
    [6]
    张义坤. 煤矿综掘面泡沫降尘技术研究与实施[J]. 中国安全科学学报,2012,22(2):151-156.

    ZHANG Yikun. Study on dust control technology with foam in fully mechanized workface of Huoerxinhe Coal Mine[J]. China Safety Science Journal,2012,22(2):151-156.
    [7]
    蒋仲安,杨斌,张国梁,等. 高原矿井掘进工作面截割粉尘污染效应及通风控尘参数分析[J]. 煤炭学报,2021,46(7):2146-2157.

    JIANG Zhong'an,YANG Bin,ZHANG Guoliang,et al. Analysis of dust pollution effect of cutting dust and ventilation control parameters at the heading face in plateau mines[J]. Journal of China Coal Society,2021,46(7):2146-2157.
    [8]
    秦跃平,张苗苗,崔丽洁,等. 综掘工作面粉尘运移的数值模拟及压风分流降尘方式研究[J]. 北京科技大学学报,2011,33(7):790-794.

    QIN Yueping,ZHANG Miaomiao,CUI Lijie,et al. Numerical simulation of dust migration and study on dust removal modes with the forced ventilation shunt in a fully mechanized workface[J]. Journal of University of Science and Technology Beijing,2011,33(7):790-794.
    [9]
    聂文,程卫民,周刚. 综掘工作面压风气幕形成机理与阻尘效果分析[J]. 煤炭学报,2015,40(3):609-615.

    NIE Wen,CHENG Weimin,ZHOU Gang. Formation mechanism of pressure air curtain and analysis of dust suppression's effects in mechanized excavation face[J]. Journal of China Coal Society,2015,40(3):609-615.
    [10]
    LIU Qiang,NIE Wen,HUA Yun,et al. The effects of the installation position of a multi-radial swirling air-curtain generator on dust diffusion and pollution rules in a fully-mechanized excavation face:a case study[J]. Powder Technology,2018,329:371-385. DOI: 10.1016/j.powtec.2018.01.064
    [11]
    陈芳,张设计,马威,等. 综掘工作面压风分流控除尘技术研究与应用[J]. 煤炭学报,2018,43(增刊2):483-489.

    CHEN Fang,ZHANG Sheji,MA Wei,et al. Research and application of the technology of forced ventilation diversion to control and reduce dust in fully mechanized excavation face[J]. Journal of China Coal Society,2018,43(S2):483-489.
    [12]
    王建国,王康,樊亦洋. 附壁风筒条缝参数对综掘工作面控尘效果的影响[J]. 煤矿安全,2021,52(6):206-210.

    WANG Jianguo,WANG Kang,FAN Yiyang. Influence of slot parameters of wall-attached air duct on dust control effect of fully mechanized mining face[J]. Safety in Coal Mines,2021,52(6):206-210.
    [13]
    王昊,张永亮,撒占友,等. 综掘工作面压抽风量比对多径向涡旋气幕阻尘效果的影响[J]. 矿业安全与环保,2022,49(2):117-121,126.

    WANG Hao,ZHANG Yongliang,SA Zhanyou,et al. Effect of the forced-suction airflow volume ratio on the dust suppression of swirling air curtain in fully mechanized excavation face[J]. Mining Safety & Environmental Protection,2022,49(2):117-121,126.
    [14]
    龚晓燕,彭高高,宋涛,等. 掘进工作面长压短抽通风出风口风流调控参数研究[J]. 工矿自动化,2021,47(9):45-52.

    GONG Xiaoyan,PENG Gaogao,SONG Tao,et al. Study on air flow control parameters of long-pressure and short-extraction ventilation air outlets in heading face[J]. Industry and Mine Automation,2021,47(9):45-52.
    [15]
    陈芳. 综掘工作面分段控风控尘技术研究与应用[J]. 煤炭工程,2019,51(12):106-110.

    CHEN Fang. Research and application of sectional airflow and dust control technology in fully mechanized tunnelling face[J]. Coal Engineering,2019,51(12):106-110.
    [16]
    程卫民,王昊,孙彪,等. 综掘面径向分风与压风配比对风幕阻尘的影响[J]. 中国矿业大学学报,2017,46(5):1014-1023.

    CHENG Weimin,WANG Hao,SUN Biao,et al. Effects of ratio of radial partial air volume to pressure air volume on air curtain dust control at fully mechanized working face[J]. Journal of China University of Mining & Technology,2017,46(5):1014-1023.
    [17]
    韩敏,王建国,王康. 多抽风筒对综掘面除尘的影响研究[J]. 矿业安全与环保,2022,49(5):114-118.

    HAN Min,WANG Jianguo,WANG Kang. Study on the influence of multiple exhaust pipes on dust removal in fully mechanized excavation face[J]. Mining Safety & Environmental Protection,2022,49(5):114-118.
    [18]
    王昊,撒占友,王春源,等. 综掘工作面通风条件对径向旋流风幕阻尘效果的影响[J]. 煤矿安全,2022,53(3):186-192.

    WANG Hao,SA Zhanyou,WANG Chunyuan,et al. Influences of ventilation conditions of fully mechanized excavation face on dust-resistance effect of radial swirling air curtain[J]. Safety in Coal Mines,2022,53(3):186-192.
    [19]
    杨泽安,王义亮. 综掘工作面湿式除尘条件下尘雾耦合数值模拟[J]. 煤矿安全,2021,52(11):170-175.

    YANG Ze'an,WANG Yiliang. Numerical simulation of dust and spray coupling under wet dust removal condition in fully mechanized excavation face[J]. Safety in Coal Mines,2021,52(11):170-175.
    [20]
    魏星,高丹红,张国宝. 旋流气幕系统对综掘面控尘流场的影响研究[J]. 矿业研究与开发,2019,39(12):109-115.

    WEI Xing,GAO Danhong,ZHANG Guobao. The impact of swirling air curtain system on the dust control flow field in the fully-mechanized excavation face[J]. Mining Research and Development,2019,39(12):109-115.
    [21]
    王磊,程煜,徐荣萧. 基于EDEM仿真的煤岩截割产尘规律研究[J]. 煤矿安全,2023,54(1):22-28.

    WANG Lei,CHENG Yu,XU Rongxiao. Mechanism of dust production during coal and rock cutting based on EDEM[J]. Safety in Coal Mines,2023,54(1):22-28.
    [22]
    邹常富. 岩巷产尘规律及控风除尘技术研究[J]. 煤炭技术,2021,40(4):77-79.

    ZOU Changfu. Research on dust generation law of rock drift and wind control and dust removal technology[J]. Coal Technology,2021,40(4):77-79.
    [23]
    侯树宏,郝军,李腾龙,等. 综掘工作面通风控尘参数匹配关系研究及应用[J]. 煤炭技术,2022,41(1):166-169.

    HOU Shuhong,HAO Jun,LI Tenglong,et al. Research and application of ventilation and dust control parameters matching in fully mechanized driving face[J]. Coal Technology,2022,41(1):166-169.
    [24]
    张义坤,蒋仲安,孙雅茹. 附壁风筒对掘进工作面通风除尘的促进作用[J]. 煤矿安全,2017,48(12):161-163.

    ZHANG Yikun,JIANG Zhong'an,SUN Yaru. Promotion effect of dust removal in heading face by ventilation duct with coanda effect[J]. Safety in Coal Mines,2017,48(12):161-163.
  • Related Articles

    [1]HUANG Chao, TANG Mingyun, WANG Lele, CAI Jianguo, YUAN Yanan. Migration and distribution patterns of cutting dust in a continuous mining face under ventilation disturbance[J]. Journal of Mine Automation, 2024, 50(10): 168-178. DOI: 10.13272/j.issn.1671-251x.2024080046
    [2]LI Changjie, XIN Chuangye, WANG Hao. Effects of air curtain dust control parameters on dust pollution in fully mechanized mining faces[J]. Journal of Mine Automation, 2024, 50(10): 160-167. DOI: 10.13272/j.issn.1671-251x.2024080054
    [3]JIA Nan. The influence of coal pore structure on gas desorption-diffusion-seepage process[J]. Journal of Mine Automation, 2024, 50(3): 122-130. DOI: 10.13272/j.issn.1671-251x.2023110076
    [4]GONG Xiaoyan, WANG Tianshu, CHEN Long, PEI Xiaoze, LI Xiangbin, ZHU Qianli, NIU Huming. Research on dust settlement under mixed air flow control in fully mechanized excavation face[J]. Journal of Mine Automation, 2024, 50(2): 106-115. DOI: 10.13272/j.issn.1671-251x.2023090022
    [5]ZHOU Quanchao, YANG Shengqiang, JIANG Xiaoyuan, SANG Naiwen. Research on dust distribution law and optimization of ventilation and dust reduction on fully mechanized heading face[J]. Journal of Mine Automation, 2019, 45(11): 70-74. DOI: 10.13272/j.issn.1671-251x.2019050026
    [6]QIN Zhu. Numerical simulation of dust concentration distribution in transfer site of belt conveyor[J]. Journal of Mine Automation, 2018, 44(7): 70-74. DOI: 10.13272/j.issn.1671-251x.2018010064
    [7]SU Heng, YANG Yong, CHEN Lianfang, ZHAO Jun. Research of influence of pressure and temperature on gas diffusion law[J]. Journal of Mine Automation, 2015, 41(2): 65-67. DOI: 10.13272/j.issn.1671-251x.2015.02.018
    [8]LI Dong-xiao. Discussion on Monitoring Technology of Coal Mine Dust[J]. Journal of Mine Automation, 2011, 37(4): 54-55.
    [9]RONG Rong. Design of Monitoring and Control System for Coal Dust[J]. Journal of Mine Automation, 2010, 36(1): 96-98.
    [10]ZHU Yu. Study on Computer Automatic Control of Diffuse Stove[J]. Journal of Mine Automation, 2002, 28(6): 16-18.
  • Cited by

    Periodical cited type(65)

    1. 王一飞, 陶珑, 王海稳, 廖成杰, 杨德松. 基于R2868型传感器的火焰信息传输系统. 自动化应用. 2025(10)
    2. 田新琦,蔡存军,瞿维迎,孟祥顺,路交通. 无线节点状态QC与资料品质关系研究与应用. 石油物探. 2024(04): 735-745 .
    3. 王立新,郭凰,杨佳宇,李爽,李储军,汪珂. 无线通信在结构健康监测系统的应用研究综述. 科学技术与工程. 2023(06): 2229-2241 .
    4. 李孟娇,孙彤,付建林,郭彬,张义伟. 基于LoRa技术的煤矿上隅角瓦斯监测系统设计. 机电工程技术. 2023(04): 236-239 .
    5. 曹现刚,张富强,史可欣. 基于ZigBee协议的矿用设备数据采集分站设计. 仪表技术与传感器. 2023(03): 65-70 .
    6. 杨军,张超,杨恢凡,郭一楠. 煤炭工业互联网技术研究综述. 工矿自动化. 2023(04): 23-32 . 本站查看
    7. 蒋鹏. 基于LoRa无线通信的煤矿矿井环境智能监测系统设计. 煤炭技术. 2023(07): 206-208 .
    8. 张孟魁. 巷道顶板离层动态监测系统的研发与应用. 能源技术与管理. 2023(05): 168-170 .
    9. 李彦廷,董飞,葛鲲鹏,蒋相余,王豪,赵子含,丰耀辉. 基于LoRa的矿工体征状态监测系统设计. 曲阜师范大学学报(自然科学版). 2023(04): 91-98 .
    10. 陈贤,周澍. 一种低功耗综采工作面人员定位系统设计. 煤矿安全. 2023(11): 218-221 .
    11. 张向阳,彭志豪,靳昊玥,侯钰慧,王帅,王雄. 基于LoRa与Socket的建筑能耗异构数据融合方法. 现代电子技术. 2022(06): 158-162 .
    12. 程晓涵,李宗吾,谢秉沁,阳辉,张涛,袁隆,赵林. 基于MEMS技术的矿用无线传感采集系统设计. 煤炭工程. 2022(03): 26-32 .
    13. 陈青. 无线节点式小孔径钻孔瓦斯抽采监测系统的研制. 工业仪表与自动化装置. 2022(03): 35-40 .
    14. 李萍丰,张金链,徐振洋,张兵兵,杨飞,李新. 基于LoRa物联的远程智能起爆系统研发. 金属矿山. 2022(07): 42-49 .
    15. 李华,王桂忠. 基于LoRa与CAN通信的液压支架压力传感器系统设计与试验. 煤矿机械. 2022(09): 18-21 .
    16. 乐强,张怀,袁久春,况伟,朱勇,何友才. 基于LoRa技术的节点仪监控系统研究. 石油管材与仪器. 2022(06): 32-37 .
    17. 赵贺,孙榕泽. 基于LoRa技术的机械设备监测终端设计. 自动化应用. 2022(08): 46-49+72 .
    18. 贺石锋,吴伶锡,陈亦昕,詹杰. 矿用机车嵌入式多功能遥控系统的设计与实现. 广州航海学院学报. 2022(04): 50-54 .
    19. 苗可彬,韩阳. LoRa射频芯片的无线激光甲烷传感器设计. 单片机与嵌入式系统应用. 2021(01): 61-64+68 .
    20. 谢铖. 基于LoRa技术的森林火灾预警与控制系统研究. 科技经济导刊. 2021(02): 25-26+70 .
    21. 周德胜. 基于LoRa的矿用无线通信系统设计. 煤矿安全. 2021(04): 170-173 .
    22. 严鸿鹏,胡可,胡龙源. Lora通信技术在故障指示器中的应用. 信息记录材料. 2021(03): 113-115 .
    23. 张文焱,韩立军,纪道荣,王生晖,初宗辉,杨庆禹. 发爆器与人员安全区闭锁系统设计与实现. 自动化技术与应用. 2021(05): 175-178 .
    24. 潘晓博. 基于LoRa的低功耗瓦斯浓度分布式监测系统设计. 工矿自动化. 2021(06): 103-108 . 本站查看
    25. 刘湛,张辉. 基于LoRa的电力数据采集系统设计与实现. 工业控制计算机. 2021(08): 23-25 .
    26. 皇甫姗姗,朱节中,杨再强,马玉翡. 中国温室环境控制研究进展. 中国农学通报. 2021(27): 125-131 .
    27. 朱海峰,杨锐. 基于LoRa技术的顶板监测系统的应用. 山东煤炭科技. 2021(09): 181-183 .
    28. 吴学兵. 基于LoRa技术的节点地震采集单元数据远传系统设计. 石油物探. 2021(S1): 1-4 .
    29. 张洪光,刘亭亭,吕秀莎,张莹,聂剑红,李青. 三维露天矿山场景中异构分簇组网协议研究. 工矿自动化. 2021(12): 68-74 . 本站查看
    30. 张新. 矿井无线数据传输现状分析与系统设计. 化工矿物与加工. 2020(01): 32-35+40 .
    31. 高鑫,凌强,张力,王世杰,许舒翔. 利用无线物联网技术实现智能电力计量. 信息技术. 2020(01): 163-166 .
    32. 谭爱平,刘春德,邓庆绪. 金属矿山风险监测物联网关键技术研究现状与发展趋势. 金属矿山. 2020(01): 26-36 .
    33. 张新. 基于SX1278的矿用低速远程监控通信平台研究. 矿业安全与环保. 2020(01): 70-74 .
    34. 马洋锦,付茂全,许志,李敬兆. 矿山信息物理融合系统多节点智联策略. 工矿自动化. 2020(03): 38-42+48 . 本站查看
    35. 陈晓晶. LoRa组网技术在胶带运输监控系统中的应用研究. 工矿自动化. 2020(04): 91-97 . 本站查看
    36. 薛光辉,赵贺,孙宗正. 基于LoRa技术的矿用无线复合传感器设计与实现. 煤炭工程. 2020(04): 166-170 .
    37. 杨洋,冯耀东,吕兆海,王九洲,赵振辉. 基于矿用4G网络实现DTU在煤矿基础层设备数据采集的应用. 能源科技. 2020(06): 19-22+30 .
    38. 文渊博,牛澳,毛夏煜,张桃靖,冯兴乐. 基于LoRa的分布式火灾监测报警系统的设计与实现. 物联网技术. 2020(08): 18-22+26 .
    39. 冯抒,廖忠智,王春雨. 基于LoRa的物联网茶叶溯源系统研究. 常州信息职业技术学院学报. 2020(04): 30-34 .
    40. 谢锦宣,张欢,葛烨明,赵宇轩,周严,王满意. 石化受限空间环境监测报警系统. 电子测量技术. 2020(17): 120-125 .
    41. 梁苗,邬凯,邵江,谢勇谋,蔡玮彬. LoRa技术在公路边坡监测中的应用研究. 地下空间与工程学报. 2020(S2): 1011-1016+1029 .
    42. 李起伟. 基于LoRa通信的无线液压支架压力传感器设计. 工矿自动化. 2020(12): 111-115 . 本站查看
    43. 吴玉厚,代业旭,赵德宏. LoRa技术在机械加工关键动态数据采集的应用研究. 组合机床与自动化加工技术. 2019(01): 134-137 .
    44. 张新. LoRa技术及其在煤矿中的应用分析. 煤炭工程. 2019(03): 79-82 .
    45. 张新. 基于LoRa技术的煤矿作业环境实时监测系统设计. 自动化仪表. 2019(03): 69-73 .
    46. 朱家骅,金光,江先亮. 基于低功耗广域物联网的旅游景区垃圾监测系统. 无线通信技术. 2019(01): 57-61 .
    47. 俞铭津,江莺,张梦琦,俞旭,段峥,许越. 基于物联网的电动车智能充电系统. 测控技术. 2019(05): 48-52 .
    48. 刁志刚,王宏宇. 基于LoRa的智能多级矿井监控终端设计. 煤矿机械. 2019(05): 180-182 .
    49. 郑贵林,汪体成. 基于LoRa的温室环境智能监控系统的设计. 江苏农业科学. 2019(10): 216-219 .
    50. 梁裕琪. 利用无线物联网技术实现智能电力计量. 电工技术. 2019(12): 91-93 .
    51. 李柏均. 一种瓦斯隧道掌子面环境参数无线监测装置的设计. 自动化与仪器仪表. 2019(08): 13-16 .
    52. 吴志远,张舸帆,张前咨. 无线通讯技术在工业自动化中的应用及发展. 软件. 2019(09): 188-191 .
    53. 韩团军,尹继武,赵增群,王楷. 基于LoRa技术的矿井数据监测系统的设计与研究. 现代电子技术. 2019(20): 160-163 .
    54. 李贵蔚. 智能电源管理系统的设计与实现. 福建电脑. 2019(10): 72-73 .
    55. 史发钊,尤星懿,李亚旋,刘淑婷. 基于LoRa的固定式罐道间距测量仪. 煤矿安全. 2018(09): 160-162 .
    56. 黄海飞. 基于LoRa无线通信方式的矿区作业设备运转参数在线监测系统. 煤矿机电. 2018(03): 98-100 .
    57. 何诚刚. 基于LoRa的无线监测系统设计. 山东农业大学学报(自然科学版). 2018(03): 528-530 .
    58. 江武志,罗玉文. 智慧校园之基于LoRa技术的环境检测分析系统. 物联网技术. 2018(04): 64-67 .
    59. 唐杰,刘星,宋林章,朱润平. 一种基于EFM32LGF330F256的无线LoRa仪表设计方案. 自动化博览. 2018(01): 74-76 .
    60. 郝大为. 矿井机电设备的安装与管理分析. 世界有色金属. 2018(14): 41+43 .
    61. 李光明,李海霞. LoRa通信技术在天然气井数据监测系统的应用. 电脑知识与技术. 2018(27): 237-240 .
    62. 曹霞,余笑,王家豪. 配电线路安全监测系统设计. 电视技术. 2018(09): 103-108+125 .
    63. 魏灵恩. LoRa通信技术在井下数据采集系统中的应用. 通信电源技术. 2018(09): 185-186 .
    64. 张新. 煤矿井下远程监控终端设计. 工矿自动化. 2018(12): 97-101 . 本站查看
    65. 宋延军,梁俊艳,王德志. 基于LoRa的10 kV架空线路故障监测系统设计与实现. 华北科技学院学报. 2017(05): 30-34 .

    Other cited types(42)

Catalog

    WANG Jinyue

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (324) PDF downloads (68) Cited by(107)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return