YANG Shaowen, ZHANG Pingsong, XU Shi'ang, et al. Status and prospect of the application of mine DC electrical method technology[J]. Journal of Mine Automation,2023,49(8):20-29. DOI: 10.13272/j.issn.1671-251x.2023050099
Citation: YANG Shaowen, ZHANG Pingsong, XU Shi'ang, et al. Status and prospect of the application of mine DC electrical method technology[J]. Journal of Mine Automation,2023,49(8):20-29. DOI: 10.13272/j.issn.1671-251x.2023050099

Status and prospect of the application of mine DC electrical method technology

More Information
  • Received Date: May 29, 2023
  • Revised Date: August 08, 2023
  • Available Online: September 03, 2023
  • As an efficient means of geophysical exploration, mine DC electrical method plays an important role in accurately circling various types of anomalous zones. The development of underground detection is limited by many factors due to small space, interference and high technological requirements. Therefore, it is significant to establish a mine DC electrical method technology system that matches the intelligent mine production under the rapid extraction mode. The paper gives an overview of mine DC electrical method from three aspects, namely, basic principle, technology development and classification. It summarizes the latest progress of mine DC electrical method used in roof and floor exploration, roadway advance detection, and anomaly area exploration in the working face, etc. It analyzes the progress of the research and development of mine DC electrical method instruments and equipment. It enumerates several common types of mine DC electrical method instruments. It analyzes the key problems of mine DC electrical method in solving the engineering problems. ① The current mine DC electrical method advance detection technology has low positioning precision in the circled space of water-bearing/conducting anomalies. At the same time, there is the problem of insufficient effective detection distance. ② The construction space of mine DC electrical method is narrow, and the electrical response of multi-directional geological anomalies is superimposed in the limited testing space. It increases the difficulty of data processing and interpretation. ③ The mine DC electrical method is susceptible to interference from metal sources at the site when applied underground, especially by large metal parts such as roadheaders, hydraulic supports, anchor locks (nets) supports, rails, and conveying pipelines. The future development direction of the mine DC electrical method is prospected. ① It is suggested to construct a multi-source geoelectric field data response feature library. ② It is suggested to obtain interpretation of multi-source data fusion. ③ It is suggested to establish the intelligent monitoring system of mine DC electrical method.
  • [1]
    王双明,申艳军,宋世杰,等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报,2023,48(7):2599-2612.

    WANG Shuangming,SHEN Yanjun,SONG Shijie,et al. Change of coal energy status and green and low-carbon development under the "dual carbon" goal[J]. Journal of China Coal Society,2023,48(7):2599-2612.
    [2]
    国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[EB/OL]. [2023-06-29]. https://www.gov.cn/xinwen/2023-02/28/content_5743623.htm?eqid=cb48c394000725f6000000026458a34d.

    National Bureau of Statistics. Statistical communique of the People's Republic of China on the 2022 national economic and social development [EB/OL]. [2023-06-29]. https://www.gov.cn/xinwen/2023-02/28/content_5743623.htm?eqid=cb48c394000725f6000000026458a34d.
    [3]
    国家能源局. 关于加快推进能源数字化智能化发展的若干意见[EB/OL]. [2023-06-29]. https://www.gov.cn/zhengce/zhengceku/2023-04/02/content_5749758.htm.

    National Energy Administration. Some views on accelerating the development of digital intelligence in energy[EB/OL]. [2023-06-29]. https://www.gov.cn/zhengce/zhengceku/2023-04/02/content_5749758.htm.
    [4]
    袁亮,张平松. 煤矿透明地质模型动态重构的关键技术与路径思考[J]. 煤炭学报,2023,48(1):1-14.

    YUAN Liang,ZHANG Pingsong. Key technology and path thinking of dynamic reconstruction of mine transparent geological model[J]. Journal of China Coal Society,2023,48(1):1-14.
    [5]
    董书宁. 煤矿安全高效生产地质保障的新技术新装备[J]. 中国煤炭,2020,46(9):15-23.

    DONG Shuning. New technology and equipment of geological guarantee for safe and efficient production in coal mine[J]. China Coal,2020,46(9):15-23.
    [6]
    程建远,石显新. 中国煤炭物探技术的现状与发展[J]. 地球物理学进展,2013,28(4):2024-2032.

    CHENG Jianyuan,SHI Xianxin. Current status and development of coal geophysical technology in China[J]. Progress in Geophysics,2013,28(4):2024-2032.
    [7]
    严加永,孟贵祥,吕庆田,等. 高密度电法的进展与展望[J]. 物探与化探,2012,36(4):576-584.

    YAN Jiayong,MENG Guixiang,LYU Qingtian,et al. The progress and prospect of the electrical resistivity imaging survey[J]. Geophysical and Geochemical Exploration,2012,36(4):576-584.
    [8]
    程久龙,李飞,彭苏萍,等. 矿井巷道地球物理方法超前探测研究进展与展望[J]. 煤炭学报,2014,39(8):1742-1750.

    CHENG Jiulong,LI Fei,PENG Suping,et al. Research progress and development direction on advanced detection in mine roadway working face using geophysical methods[J]. Journal of China Coal Society,2014,39(8):1742-1750.
    [9]
    刘国兴. 电法勘探原理与方法[M]. 北京: 地质出版社, 2005.

    LIU Guoxing. Principles and methods of electrical prospecting[M]. Beijing: Geology Press, Beijing, 2005.
    [10]
    中国煤田地质总局. 中国煤田地质勘探史[M]. 北京: 煤炭工业出版社, 1993.

    China National Administration of Coal Geology.A history of China coal geological exploration[M]. Beijing: China Coal Industry Publishing House, 1993.
    [11]
    岳建华,李志聃. 矿井直流电法及在煤层底板突水探测中的应用[J]. 中国矿业大学学报,1997,26(1):96-100.

    YUE Jianhua,LI Zhidan. Mine DC electrical methods and application to coal floor water invasion detecting[J]. Journal of China University of Mining & Technology,1997,26(1):96-100.
    [12]
    李学军. 煤矿井下定点源梯度法超前探测试验研究[J]. 煤田地质与勘探,1992,20(4):59-63.

    LI Xuejun. Study and experiment on heading detecting by fixedelectric source gradient method in underground[J]. Coal Geology & Exploration,1992,20(4):59-63.
    [13]
    岳建华, 刘树才. 矿井直流电法勘探[M]. 徐州: 中国矿业大学出版社, 2000.

    YUE Jianhua, LIU Shucai. DC electrical exploration in mines[M]. Xuzhou: China University of Mining and Technology Press, 2000.
    [14]
    刘盛东, 张平松. 分布式并行智能电极电位差信号采集方法和系统: CN1616987[P]. 2005-05-18.

    LIU Shengdong, ZHANG Pingsong. Collecting method and system for distributive parallel intelligent electrode potential difference signals: CN1616987[P]. 2005-05-18.
    [15]
    王冰纯,鲁晶津,房哲. 基于伪随机序列的矿井电法监测系统[J]. 煤矿安全,2018,49(12):118-121.

    WANG Bingchun,LU Jingjin,FANG Zhe. Research on mine electrical monitoring system based on pseudo-random sequence[J]. Safety in Coal Mines,2018,49(12):118-121.
    [16]
    刘盛东,刘静,戚俊,等. 矿井并行电法技术体系与新进展[J]. 煤炭学报,2019,44(8):2336-2345.

    LIU Shengdong,LIU Jing,QI Jun,et al. Applied technologies and new advances of parallel electrical method in mining geophysics[J]. Journal of China Coal Society,2019,44(8):2336-2345.
    [17]
    程建远,王保利,范涛,等. 煤矿地质透明化典型应用场景及关键技术[J]. 煤炭科学技术,2022,50(7):1-12.

    CHENG Jianyuan,WANG Baoli,FAN Tao,et al. Typical application scenes and key technologies of coal mine geological transparency[J]. Coal Science and Technology,2022,50(7):1-12.
    [18]
    ZHAO Shuanfeng,WEI Mingle,ZHANG Chuanwei,et al. Coal mine inclined shaft advanced detection method and physical model test based on shield cutterhead moving array electrodes[J]. Energies,2019,12(9):1-15.
    [19]
    张平松,欧元超,李圣林. 我国矿井物探技术及装备的发展现状与思考[J]. 煤炭科学技术,2021,49(7):1-15.

    ZHANG Pingsong,OU Yuanchao,LI Shenglin. Development quo-status and thinking of mine geophysical prospecting technology and equipment in China[J]. Coal Science and Technology,2021,49(7):1-15.
    [20]
    曹煜. 并行直流电法成像技术研究[D]. 淮南: 安徽理工大学, 2008.

    CAO Yu. The imager technology of concurrent electrical meter[D]. Huainan: Anhui University of Science and Technology, 2008.
    [21]
    张平松,许时昂,郭立全,等. 采场围岩变形与破坏监测技术研究进展及展望[J]. 煤炭科学技术,2020,48(3):14-48.

    ZHANG Pingsong,XU shi'ang,GUO Liquan,et al. Prospect and progress of deformation and failure monitoring technology of surrounding rock in stope[J]. Coal Science and Technology,2020,48(3):14-48.
    [22]
    程久龙,于师建. 覆岩变形破坏电阻率响应特征的模拟实验研究[J]. 地球物理学报,2000,43(5):699-706.

    CHENG Jiulong,YU Shijian. Simulation experiment on the response of resistivity to deformation and failure of overburden[J]. Chinese Journal of Geophysics,2000,43(5):699-706.
    [23]
    李建楼,刘盛东,张平松,等. 并行网络电法在煤层覆岩破坏监测中的应用[J]. 煤田地质与勘探,2008,36(2):61-64.

    LI Jianlou,LIU Shengdong,ZHANG Pingsong,et al. Failure dynamic observation of upper covered stratum under mine using parallel network electricity method[J]. Coal Geology & Exploration,2008,36(2):61-64.
    [24]
    刘树才,刘鑫明,姜志海,等. 煤层底板导水裂隙演化规律的电法探测研究[J]. 岩石力学与工程学报,2009,28(2):348-356.

    LIU Shucai,LIU Xinming,JIANG Zhihai,et al. Research on electrical prediction for evaluating water conducting fracture zones in coal seam floor[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):348-356.
    [25]
    张平松,胡雄武,刘盛东. 采煤面覆岩破坏动态测试模拟研究[J]. 岩石力学与工程学报,2011,30(1):78-83.

    ZHANG Pingsong,HU Xiongwu,LIU Shengdong. Study of dynamic detection simulation of overburden failure in model workface[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(1):78-83.
    [26]
    张平松,胡雄武,吴荣新. 岩层变形与破坏电法测试系统研究[J]. 岩土力学,2012,33(3):952-956.

    ZHANG Pingsong,HU Xiongwu,WU Rongxin. Study of detection system of distortion and collapsing of top rock by resistivity method in working face[J]. Rock and Soil Mechanics,2012,33(3):952-956.
    [27]
    施龙青,牛超,翟培合,等. 三维高密度电法在顶板水探测中应用[J]. 地球物理学进展,2013,28(6):3276-3279.

    SHI Longqing,NIU Chao,ZHAI Peihe,et al. Application of three-dimensional high density resistivity technique in detecting roof water[J]. Progress in Geophysics,2013,28(6):3276-3279.
    [28]
    SHI Longqing,WANG Ying,QIU Mei,et al. Application of three-dimensional high-density resistivity method in roof water advanced detection during working stope mining[J]. Arabian Journal of Geosciences,2019,12(15):464-471. DOI: 10.1007/s12517-019-4586-7
    [29]
    杨海平,刘盛东,杨彩,等. 煤层顶底板采动破坏同步动态监测电性特征分析[J]. 工程地质学报,2021,29(4):1002-1009.

    YANG Haiping,LIU Shengdong,YANG Cai,et al. Analysis of electrical characteristics of mining destruction on coal seam roof and floor with simultaneous dynamic monitoring method[J]. Journal of Engineering Geology,2021,29(4):1002-1009.
    [30]
    鲁晶津. 工作面采动破坏过程电阻率动态响应特征研究[J]. 工矿自动化,2023,49(1):36-45,108.

    LU Jingjin. Study on dynamic response characteristics of resistivity in mining failure process of working face[J]. Journal of Mine Automation,2023,49(1):36-45,108.
    [31]
    翟培合,张同德,任科科,等. 基于最小二乘正则化的高密度电法在小港煤矿71502工作面底板中的应用[J]. 中国科技论文,2022,17(1):15-20.

    ZHAI Peihe,ZHANG Tongde,REN Keke,et al. Application of high density electrical method based on least square regularization in floor of working face 71502 of Xiaogang Coal Mine[J]. China Sciencepaper,2022,17(1):15-20.
    [32]
    胡雄武,孟当当,张平松,等. 采煤工作面底板水视电阻率全方位探测方法[J]. 煤炭学报,2019,44(8):2369-2376.

    HU Xiongwu,MENG Dangdang,ZHANG Pingsong,et al. An all-directional detection method of apparent resistivity for water from the floor strata of coal-mining face[J]. Journal of China Coal Society,2019,44(8):2369-2376.
    [33]
    鲁晶津,李德山,王冰纯. 超大采高工作面顶板电阻率监测可行性试验[J]. 煤田地质与勘探,2019,47(3):186-194.

    LU Jingjin,LI Deshan,WANG Bingchun. Feasibility test of roof resistivity monitoring for super-high mining face[J]. Coal Geology & Exploration,2019,47(3):186-194.
    [34]
    温亨聪,刘宝宝,杨海涛. 矿井电法高效顶板探测系统研究与应用[J]. 煤矿安全,2022,53(1):151-155.

    WEN Hengcong,LIU Baobao,YANG Haitao. Research and application of mine electric method in high efficiency roof detection system[J]. Safety in Coal Mines,2022,53(1):151-155.
    [35]
    康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报,2021,40(1):1-30.

    KANG Hongpu. Seventy years development and prospects of strata control technologies for coal mine roadways in China[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):1-30.
    [36]
    程久龙,王玉和,于师建,等. 巷道掘进中电阻率法超前探测原理与应用[J]. 煤田地质与勘探,2000,28(4):60-62.

    CHENG Jiulong,WANG Yuhe,YU Shijian,et al. The principle and application of advance surveying in roadway excavation by resistivity method[J]. Coal Geology & Exploration,2000,28(4):60-62.
    [37]
    刘青雯. 井下电法超前探测方法及其应用[J]. 煤田地质与勘探,2001,29(5):60-62.

    LIU Qingwen. Underground electrical lead survey method and its application[J]. Coal Geology & Exploration,2001,29(5):60-62.
    [38]
    黄俊革,王家林,阮百尧. 坑道直流电阻率法超前探测研究[J]. 地球物理学报,2006,49(5):1529-1538.

    HUANG Junge,WANG Jialin,RUAN Baiyao. A study on advanced detection using DC resistivity method in tunnel[J]. Chinese Journal of Geophysics,2006,49(5):1529-1538.
    [39]
    胡雄武,张平松,吴荣新,等. 矿井多极供电电阻率法超前探测技术研究[J]. 地球物理学进展,2010,25(5):1709-1715.

    HU Xiongwu,ZHANG Pingsong,WU Rongxing,et al. Study on the advanced detection technique by multi-electrode direct current resistivity in mines[J]. Progress in Geophysics,2010,25(5):1709-1715.
    [40]
    阮百尧,邓小康,刘海飞,等. 坑道直流电阻率超前聚焦探测新方法研究[J]. 地球物理学报,2009,52(1):289-296.

    RUAN Baiyao,DENG Xiaokang,LIU Haifei,et al. Research on a new method of advanced focus detection with DC resistivity in tunnel[J]. Chinese Journal of Geophysics,2009,52(1):289-296.
    [41]
    韩德品,李丹,程久龙,等. 超前探测灾害性含导水地质构造的直流电法[J]. 煤炭学报,2010,35(4):635-639.

    HAN Depin,LI Dan,CHENG Jiulong,et al. DC method of advanced detecting disastrous water-conducting or water-bearing geological structures along same layer[J]. Journal of China Coal Society,2010,35(4):635-639.
    [42]
    周官群,王亚飞,陈兴海,等. 掘进工作面“三角锥”型直流电法超前探测正演研究[J]. 煤炭学报,2022,47(8):3015-3023.

    ZHOU Guanqun,WANG Yafei,CHEN Xinghai,et al. Research on forward modeling of "triangular cone" type direct current method for heading detection[J]. Journal of China Coal Society,2022,47(8):3015-3023.
    [43]
    张平松,李永盛,胡雄武. 巷道掘进直流电阻率法超前探测技术应用探讨[J]. 地下空间与工程学报,2013,9(1):135-140.

    ZHANG Pingsong,LI Yongsheng,HU Xiongwu. Application and discussion of the advanced detection technology with DC resistivity method in tunnel[J]. Chinese Journal of Underground Space and Engineering,2013,9(1):135-140.
    [44]
    王敏,刘玉,牟义,等. 多装置矿井直流电法巷道超前探测研究及应用[J]. 煤炭学报,2021,46(增刊1):396-405.

    WANG Min,LIU Yu,MU Yi,et al. Research and application of multi-array mine DC electrical method for road-way advanced detection[J]. Journal of China Coal Society,2021,46(S1):396-405.
    [45]
    刘洋,吴小平. 巷道超前探测的并行Monte Carlo方法及电阻率各向异性影响[J]. 地球物理学报,2016,59(11):4297-4309.

    LIU Yang,WU Xiaoping. Parallel Monte Carlo method for advanced detection in tunnel incorporating anisotropic resistivity effect[J]. Chinese Journal of Geophysics,2016,59(11):4297-4309.
    [46]
    赵栓峰,丁志兵,李凯凯,等. 盾构机掘进煤矿巷道超前探测系统[J]. 煤矿安全,2019,50(2):117-120.

    ZHAO Shuanfeng,DING Zhibing,LI Kaikai,et al. Advanced detection system for shield tunneling coal roadway[J]. Safety in Coal Mines,2019,50(2):117-120.
    [47]
    赵栓峰,拜云瑞,黄涛,等. 基于移动阵列电极的盾构超前探测正演响应分析[J]. 煤田地质与勘探,2020,48(1):214-220.

    ZHAO Shuanfeng,BAI Yunrui,HUANG Tao,et al. Forward response analysis of shield advanced detection with moving array electrode[J]. Coal Geology & Exploration,2020,48(1):214-220.
    [48]
    王程,鲁晶津. 音频电穿透三维反演在含/导水陷落柱探查中的应用[J]. 工矿自动化,2019,45(8):105-108.

    WANG Cheng,LU Jingjin. Application of 3D inversion of audio-frequency electric perspective in detection of water-containing/water-conductive collapse column[J]. Industry and Mine Automation,2019,45(8):105-108.
    [49]
    牟义,杨新亮,李宏杰,等. 采煤工作面水害电法精细探测技术[J]. 中国矿业,2014,23(3):88-92.

    MU Yi,YANG Xinliang,LI Hongjie,et al. Water disaster fine electrical method detection technology in coal mining working face[J]. China Mining Magazine,2014,23(3):88-92.
    [50]
    陈继福,赵庆珍. 音频电法透视技术在界沟矿井水害防治工作中的应用[J]. 山西大同大学学报(自然科学版),2020,36(1):56-60.

    CHEN Jifu,ZHAO Qingzhen. Application of audio electric perspective technology in mine water disaster prevention and cure in Jiegou[J]. Journal of Shanxi Datong University(Natural Science Edition),2020,36(1):56-60.
    [51]
    曹强. 巷道间电阻率法三维正反演研究[D]. 北京: 中国地质大学(北京), 2015.

    CAO Qiang. 3-D resistivity forward modeling and inversion between two mine roadways[D]. Beijing: China University of Geosciences, 2015.
    [52]
    陶冬琴,韩德品. 防爆数字直流电法仪及其应用[J]. 煤田地质与勘探,1994,22(1):54-56.

    TAO Dongqin,HAN Depin. Explosion proof digital DC electrical meter and its application[J]. Coal Geology & Exploration,1994,22(1):54-56.
    [53]
    王冰纯. 基于2n伪随机序列的矿井电法监测系统研制[D]. 北京: 煤炭科学研究总院, 2016.

    WANG Bingchun. Development of mine electrical monitoring system based on 2n pseudorandom sequence[D]. Beijing: China Coal Research Institute, 2016.
    [54]
    靳德武,赵春虎,段建华,等. 煤层底板水害三维监测与智能预警系统研究[J]. 煤炭学报,2020,45(6):2256-2264.

    JIN Dewu,ZHAO Chunhu,DUAN Jianhua,et al. Research on 3D monitoring and intelligent early warning system for water hazard of coal seam floor[J]. Journal of China Coal Society,2020,45(6):2256-2264.
  • Related Articles

    [1]LI Shasha. Multi-source data processing and decision support system for coal mine based on artificial intelligence[J]. Journal of Mine Automation, 2024, 50(S2): 89-92.
    [2]LIU Yang, DING Zhen. Discussion on the construction of intelligent system of mine safety[J]. Journal of Mine Automation, 2023, 49(S1): 1-3.
    [3]TAN Zhanglu, WANG Meijun, YE Zihan. Research on intelligent coal mine data governance system and key issues[J]. Journal of Mine Automation, 2023, 49(5): 22-29. DOI: 10.13272/j.issn.1671-251x.18104
    [4]WU Haotian. Security assurance system of industrial control data for intelligent mine[J]. Journal of Mine Automation, 2022, 48(S2): 79-81.
    [5]ZHANG Peng. Exploration on construction of big data system for intelligent mine[J]. Journal of Mine Automation, 2021, 47(S1): 21-23.
    [6]BAO Jianjun. Research on multi-source data fusion positioning algorithm for coal mine roadway[J]. Journal of Mine Automation, 2019, 45(8): 38-42. DOI: 10.13272/j.issn.1671-251x.17462
    [7]ZHANG Pengpeng, YU Along, SUN Shiyu, XU Dongping. Application of multi-sensor data fusion in mine safety monitoring[J]. Journal of Mine Automation, 2015, 41(12): 5-8. DOI: 10.13272/j.issn.1671-251x.2015.12.002
    [8]LIU Kai, GUO Yongyi, WU Shiyue. Research of hierarchical multi-sensor data fusion model for coal mine safety monitoring[J]. Journal of Mine Automation, 2014, 40(6): 45-50. DOI: 10.13272/j.issn.1671-251x.2014.06.012
    [9]SUN Hong-ge~, ZANG Yi~, CAO Yi~, YAN Xin~. Application of Fuzzy Data Fusion in Multi-sensor Environment Monitoring[J]. Journal of Mine Automation, 2009, 35(8): 22-24.
    [10]HAN Bing, FU Hua. Gas Monitoring System Based on Data Fusion with BP Neural Network[J]. Journal of Mine Automation, 2008, 34(4): 10-13.
  • Cited by

    Periodical cited type(8)

    1. 杨敬伟,陈亚峰,辛向军. 融合5G技术的矿井智能巡检机器人通信系统研发. 金属矿山. 2025(02): 161-166 .
    2. 周勇. 基于RK3568的采煤机5G智能控制器硬件电路设计. 煤矿机电. 2024(01): 20-26 .
    3. 张绍斌. 矿用5G综合基站设计及应用. 工矿自动化. 2024(S1): 57-60 . 本站查看
    4. 魏春贤,李涛,连昶锦. 时间敏感网络在煤矿的应用. 工矿自动化. 2024(S1): 65-68+99 . 本站查看
    5. 张雪军,黎卓芳. 煤矿多参数复合风险智能分级决策预警系统. 工矿自动化. 2024(S1): 88-91 . 本站查看
    6. 张科学,张立亚,李晨鑫,魏春贤,高鹏. 基于5G的电液控设备邻架控制方法. 工矿自动化. 2024(S1): 165-168 . 本站查看
    7. 李晨鑫. 煤矿用5G关键技术研究现状与发展方向. 工矿自动化. 2024(07): 79-88 . 本站查看
    8. 李坤,莫合塔尔·玉素甫,依力尔·阿迪里,艾柯木提拉·阿卜杜艾尼. 基于无线定位的巷道表面位移测量方法. 科技创新与应用. 2024(25): 153-156 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (375) PDF downloads (51) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return