WEI Dong, LI Zuxu, SI Lei, et al. Shape monitoring of scraper conveyor based on inertial measurement unit[J]. Journal of Mine Automation,2023,49(8):37-52, 80. DOI: 10.13272/j.issn.1671-251x.2023010003
Citation: WEI Dong, LI Zuxu, SI Lei, et al. Shape monitoring of scraper conveyor based on inertial measurement unit[J]. Journal of Mine Automation,2023,49(8):37-52, 80. DOI: 10.13272/j.issn.1671-251x.2023010003

Shape monitoring of scraper conveyor based on inertial measurement unit

More Information
  • Received Date: December 31, 2022
  • Revised Date: August 09, 2023
  • Available Online: September 03, 2023
  • Scraper conveyor is the core transportation equipment of the fully mechanized working face. Accurately perceiving its form is an important prerequisite to enhance its carrying capacity, alleviate the transmission impact, and improve the straightness of fully mechanized working face. The commonly used indirect measurement methods for the shape of scraper conveyors are difficult to accurately characterize their shape, resulting in significant measurement model errors. To address this issue, an inertial measurement unit is used to directly measure the original pose information of the middle trough of scraper conveyor, achieving accurate acquisition of the shape data of scraper conveyor. A wavelet thresholding denoising method that combines Heursure threshold rules and a new threshold function is used to filter out noise interference in the acceleration signal of the middle trough. Based on this, the motion features of the middle trough are analyzed, and a middle trough motion state recognition model based on random forest algorithm is designed. Based on the motion state recognition results, different strategies are used to update the position of the middle trough. It reduces the accumulated IMU data error over time and improves the precision of IMU position calculation. The improved Harris hawk optimization (HHO) algorithm unscented Kalman filter (UKF) is designed for middle trough attitude calculation. It is verified through experiments that the attitude angle calculated by this method meets the requirements of middle trough attitude measurement. The experimental platform for shape monitoring of scraper conveyors is constructed. It conducts experimental verification on the shape calculation method of scraper conveyors based on motion state recognition and improved HHO optimized UKF. The results show that when the scraper conveyor performs a single sliding with a step distance of 250 mm, the maximum cumulative errors of displacement in the X and Y directions of the scraper conveyor composed of 10 middle troughs are 6.4 mm and 8.4 mm respectively under the horizontal working condition of bottom plate. It remains unchanged in the Z direction. The maximum cumulative errors of pitch angle, roll angle, and heading angle are −0.148°, −0.035°, and 0.457° respectively. Under the working condition of floor undulation, the maximum cumulative errors of displacement in the X, Y, and Z directions are 6.6 mm, 11.5 mm, and 6.9 mm respectively. The maximum cumulative errors of pitch angle, roll angle, and heading angle are −0.540°, −0.157°, and 0.817° respectively. This method can effectively suppress cumulative errors, reduce measurement errors, and achieve accurate perception of the shape of the scraper conveyor.
  • [1]
    司垒,李嘉豪,谭超,等. 矿用刮板输送机垂直冲击下负载电流特性研究[J]. 煤炭科学技术,2023,51(2):400-411. DOI: 10.13199/j.cnki.cst.2021-1140

    SI Lei,LI Jiahao,TAN Chao,et al. Study on load current characteristics of scraper conveyor under vertical impact[J]. Coal Science and Technology,2023,51(2):400-411. DOI: 10.13199/j.cnki.cst.2021-1140
    [2]
    徐亮. 我国煤炭开发建设现状与“十四五”展望[J]. 中国煤炭,2021,47(3):44-48. DOI: 10.3969/j.issn.1006-530X.2021.03.006

    XU Liang. The present situation and expectation of coal exploitation and construction in China's 14th Five-Year Plan period[J]. China Coal,2021,47(3):44-48. DOI: 10.3969/j.issn.1006-530X.2021.03.006
    [3]
    毛君. 刮板输送机动力学行为分析与控制理论研究[D]. 阜新: 辽宁工程技术大学, 2006.

    MAO Jun. Dynamical behavior analysis and control theory research of scraper conveyor[D]. Fuxin: Liaoning Technical University, 2006.
    [4]
    王学文,李素华,谢嘉成,等. 机器人运动学与时序预测融合驱动的刮板输送机调直方法[J]. 煤炭学报,2021,46(2):652-666. DOI: 10.13225/j.cnki.jccs.XR20.1897

    WANG Xuewen,LI Suhua,XIE Jiacheng,et al. Straightening method of scraper conveyor driven by robot kinematics and time series prediction[J]. Journal of China Coal Society,2021,46(2):652-666. DOI: 10.13225/j.cnki.jccs.XR20.1897
    [5]
    刘婷. 刮板输送机S弯区域水平弯曲角优化关键技术研究[D]. 徐州: 中国矿业大学, 2019.

    LIU Ting. Research on key technologies for optimizing horizontal bending angle in S-bending area of scraper conveyor[D]. Xuzhou: China University of Mining and Technology, 2019.
    [6]
    乔春光,王学文,谢嘉成,等. 刮板输送机水平面形态检测方法[J]. 工矿自动化,2018,44(8):52-57. DOI: 10.13272/j.issn.1671-251x.2018060004

    QIAO Chunguang,WANG Xuewen,XIE Jiacheng,et al. Horizontal shape detection method for scraper conveyor[J]. Industry and Mine Automation,2018,44(8):52-57. DOI: 10.13272/j.issn.1671-251x.2018060004
    [7]
    KELLY M S,HAINSWORTH D W. The landmark longwall automation project[J]. Acarp Project,2005,1:1-7.
    [8]
    REID D C, HAINSWORTH D W, RALSTON J C, et al. Shearer guidance: a major advance in longwall mining[C]. The 4th International Conference on Field and Service Robotics, 2003: 469-476.
    [9]
    RALSTON J C,REID D C,DUNN M T,et al. Longwall automation:delivering enabling technology to achieve safer and more productive underground mining[J]. International Journal of Mining Science and Technology,2015,25(6):865-876. DOI: 10.1016/j.ijmst.2015.09.001
    [10]
    乔春光,王学文,谢嘉成,等. 基于采煤机运行轨迹的刮板输送机竖直面形态解算方法[J]. 工程设计学报,2018,25(5):495-502. DOI: 10.3785/j.issn.1006-754X.2018.05.001

    QIAO Chunguang,WANG Xuewen,XIE Jiacheng,et al. Vertical plane shape calculation method of scraper conveyor based on running track of shearer[J]. Chinese Journal of Engineering Design,2018,25(5):495-502. DOI: 10.3785/j.issn.1006-754X.2018.05.001
    [11]
    刘旭,王世博,韩子晨,等. 刮板输送机调直方法研究[J]. 煤矿机械,2020,41(6):54-57. DOI: 10.13436/j.mkjx.202006018

    LIU Xu,WANG Shibo,HAN Zichen,et al. Study on face alignment method of scraper conveyor[J]. Coal Mine Machinery,2020,41(6):54-57. DOI: 10.13436/j.mkjx.202006018
    [12]
    李宁. 智能工作面中刮板输送机直线度感知技术[J]. 机电工程技术,2021,50(3):186-188. DOI: 10.3969/j.issn.1009-9492.2021.03.051

    LI Ning. Straightness sensing technology of scraper conveyor of intelligent face[J]. Mechanical & Electrical Engineering Technology,2021,50(3):186-188. DOI: 10.3969/j.issn.1009-9492.2021.03.051
    [13]
    王超,李威,杨海,等. 基于航位推测的刮板输送机形态检测研究[J]. 煤炭学报,2017,42(8):2173-2180. DOI: 10.13225/j.cnki.jccs.2016.1642

    WANG Chao,LI Wei,YANG Hai,et al. Scraper conveyor shape detection based on dead reckoning[J]. Journal of China Coal Society,2017,42(8):2173-2180. DOI: 10.13225/j.cnki.jccs.2016.1642
    [14]
    权志桥. 智能工作面刮板输送机直线度FBG感知研究[D]. 徐州: 中国矿业大学, 2021.

    QUAN Zhiqiao. Research on straightness FBG perception of scraper conveyor in intelligent working face[D]. Xuzhou: China University of Mining and Technology, 2021.
    [15]
    刘鹏坤. 基于视觉测量的综采工作面直线度控制研究[D]. 北京: 中国矿业大学(北京), 2020.

    LIU Pengkun. Research on straightness control of fully mechanized coal face based on vision measurement[D]. Beijing: China University of Mining and Technology-Beijing, 2020.
    [16]
    DONOHO D L,JOHNSTONE I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the American Statistical Association,1995,90(432):1200-1224. DOI: 10.1080/01621459.1995.10476626
    [17]
    BREIMAN L. Random forests[J]. Machine Learning,2001,45(1):5-32. DOI: 10.1023/A:1010933404324
    [18]
    BREIMAN L. Bagging predictors[J]. Machine Learning,1996,24(2):123-140.
    [19]
    JULIER S,UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE,2004,92(3):401-422. DOI: 10.1109/JPROC.2003.823141
    [20]
    闫小龙,陈国光,田晓丽. 两步快速可重构无迹卡尔曼滤波算法测量导弹滚转角[J]. 仪器仪表学报,2018,39(6):140-147. DOI: 10.19650/j.cnki.cjsi.J1803312

    YAN Xiaolong,CHEN Guoguang,TIAN Xiaoli. Two-step fast reconfigurable unscented Kalman filter algorithm for measurement of missile rolling angle[J]. Chinese Journal of Scientific Instrument,2018,39(6):140-147. DOI: 10.19650/j.cnki.cjsi.J1803312
    [21]
    HEIDARI A A,MIRJALILI S,FARIS H,et al. Harris hawks optimization:algorithm and applications[J]. Future Generation Computer Systems,2019,97:849-872. DOI: 10.1016/j.future.2019.02.028
    [22]
    翟光,王妍欣,孙一勇. 基于低轨星网的多目标协同跟踪滤波技术[J]. 系统工程与电子技术,2022,44(6):1957-1967. DOI: 10.12305/j.issn.1001-506X.2022.06.23

    ZHAI Guang,WANG Yanxin,SUN Yiyong. Cooperative tracking filtering technology of multi-target based on low orbit satellite constellation[J]. Systems Engineering and Electronics,2022,44(6):1957-1967. DOI: 10.12305/j.issn.1001-506X.2022.06.23
    [23]
    汤安迪,韩统,徐登武,等. 混沌精英哈里斯鹰优化算法[J]. 计算机应用,2021,41(8):2265-2272. DOI: 10.11772/j.issn.1001-9081.2020101610

    TANG Andi,HAN Tong,XU Dengwu,et al. Chaotic elite Harris hawks optimization algorithm[J]. Journal of Computer Applications,2021,41(8):2265-2272. DOI: 10.11772/j.issn.1001-9081.2020101610
  • Related Articles

    [1]ZHANG Tiecong, FENG Jinpeng, ZHAO Yancheng, NIU Tao, LIU Guofeng. Abnormal state detection method for scraper of TDS intelligent dry sorter based on surface grayscale and texture recognition[J]. Journal of Mine Automation, 2024, 50(S1): 134-138.
    [2]LI Guihu, GAO Guijun, LI Junxia, JIA Xuefeng. A pose recognition method for warehouse cleaning robots based on extended Kalman filtering[J]. Journal of Mine Automation, 2024, 50(5): 99-106. DOI: 10.13272/j.issn.1671-251x.2024020004
    [3]WU Fengliang, KOU Lu. Automatic recognition method of ventilator wind pressure performance curve for mine ventilation network calculation[J]. Journal of Mine Automation, 2024, 50(4): 103-111. DOI: 10.13272/j.issn.1671-251x.2023100036
    [4]WU Jiangwei, NAN Bingfei. Method for recognizing coal flow status of scraper conveyor in working face[J]. Journal of Mine Automation, 2023, 49(11): 60-66. DOI: 10.13272/j.issn.1671-251x.2023080101
    [5]MAO Qinghua, GUO Wenjin, ZHAI Jiao, WANG Rongquan, SHANG Xinmang, LI Shikun, XUE Xusheng. Research on video AI recognition technology for abnormal state of coal mine belt conveyors[J]. Journal of Mine Automation, 2023, 49(9): 36-46. DOI: 10.13272/j.issn.1671-251x.18134
    [6]WANG Xue, ZHOU Hongxu, ZHANG Lei, WANG Huaying. Research on the cantilever roadheader positioning based on near-infrared binocular stereo vision[J]. Journal of Mine Automation, 2022, 48(7): 43-51, 57. DOI: 10.13272/j.issn.1671-251x.17896
    [7]FAN Hongwei, MA Ningge, ZHANG Xuhui, GAO Shuoqi, CAO Xiangang, MA Hongwei. Wear state recognition of mechanical equipment based on stacked denoised auto-encoding network[J]. Journal of Mine Automation, 2020, 46(11): 6-11. DOI: 10.13272/j.issn.1671-251x.17633
    [8]HUA Gang, REN Rong, XU Yonggang, FANG Shibing. Design of sensing system of multi-target motion state based on DM642[J]. Journal of Mine Automation, 2015, 41(6): 14-17. DOI: 10.13272/j.issn.1671-251x.2015.06.004
    [9]ZHANG Shen, HUANG Huan, ZHAI Yan-rong, MA Xiu-ping, LIU Wei. Research of Fuzzy Recognition System of Working State of Hydraulic Support[J]. Journal of Mine Automation, 2012, 38(6): 52-55.
    [10]CHENG Wen-feng, ZHANG Yao, HUANG Wen-guang. Realization Method of Real-time Motion Pause Function of ACS Motion Controller[J]. Journal of Mine Automation, 2012, 38(1): 105-108.
  • Cited by

    Periodical cited type(27)

    1. 翟小伟,李心田,侯钦元,马腾,宋波波,郝乐. 漏风条件下采空区煤自燃分级预警方法研究及应用. 煤炭科学技术. 2025(01): 161-169 .
    2. 刘东洋,张浪,姚海飞,徐长富,赵尤信,张逸斌,段思恭. 煤矿火灾智能预警系统研发与应用. 工矿自动化. 2024(01): 1-8+16 . 本站查看
    3. 邓军,李鑫,王凯,王伟峰,闫军,汤宗情,康付如,任帅京. 矿井火灾智能监测预警技术近20年研究进展及展望. 煤炭科学技术. 2024(01): 154-177 .
    4. 褚恒滨,高敏峰,王超,徐广华,王振平,张铎. 采煤工作面煤自燃标志气体CO的临界值研究. 煤矿现代化. 2024(02): 94-98 .
    5. 邓军,王津睿,任帅京,王彩萍,屈高阳,马砺. 采空区煤自燃高温点识别与探测技术研究与展望. 煤炭学报. 2024(02): 885-901 .
    6. 李夏,崔竟成. 煤矿井下外因火灾智能防控系统设计. 工矿自动化. 2024(S1): 100-103 . 本站查看
    7. 周建. 基于“一通三防”的矿井智能管控技术研究与应用. 中国煤炭. 2024(06): 59-66 .
    8. 孙文亮,刘红亮,王飞,王海平,胡世熊. 煤矿密闭区域火情监测预警方法与管控体系研究. 煤. 2024(08): 30-35 .
    9. 李慎君,沈伟,李明建,覃木广,宋志强,杨宇. 全类型重大灾害监测预警系统架构——以宁煤麦垛山煤矿为例. 能源与环保. 2024(09): 57-64+70 .
    10. 高睿. 易自燃特厚煤层煤自燃预测预报系统研究与应用. 能源技术与管理. 2024(05): 143-145+198 .
    11. 王玉怀,胡硕鹏,朱永兴,窦静文,张烜乐,张思佳. 机器学习在煤自燃预测预报中的应用现状及展望. 中国煤炭. 2024(10): 98-103 .
    12. 杨峰峰,王海晖,龚恒敏,白光杰,张巨峰. 煤自燃倾向性测试及监测技术研究进展. 煤. 2023(02): 29-32+53 .
    13. 蒋恒. 煤自燃多参数气体主辅预测指标体系研究. 中国矿业. 2023(04): 147-153 .
    14. 孟清华,白亚娥,燕利芳,张奇勇. 浅埋近距离煤层群开采煤自燃发火防治技术研究. 内蒙古煤炭经济. 2023(03): 8-10 .
    15. 路培超,唐盛禹,蒋孝元,赵波. 瓦斯与煤自燃复合灾害监测预警系统研究与应用. 能源与环保. 2023(04): 10-15 .
    16. 降华. 基于云计算的煤炭自燃安全监测系统设计. 煤炭技术. 2023(08): 154-158 .
    17. 王俊博,李鑫,田继军,韦波,彭诗淇. 煤炭开发利用产业碳足迹计算方法及减排措施综述. 煤炭学报. 2023(S1): 263-274 .
    18. 葛俊岭,朱现峰,徐振. 回采面全周期火灾综合监测技术研究与应用. 现代矿业. 2023(08): 216-219 .
    19. 叶正亮,龚选平,尚博,胡冕. 煤自燃全过程精准预测预报指标体系研究与应用. 矿业研究与开发. 2023(09): 141-145 .
    20. 曹其嘉,陈辉,韦钊,杨博飞. 基于智能算法矿井多因素监测预警平台研究. 煤炭技术. 2023(10): 150-152 .
    21. 孔彪,朱思想,胡相明,杨涛,赵旭帅,斐达特,万姝含. 基于改进鲸鱼算法优化BP神经网络的煤自燃预测研究. 矿业安全与环保. 2023(05): 30-36 .
    22. 李伟宏. 雁南煤矿智能通风控制系统研究. 工矿自动化. 2023(S2): 66-70+74 . 本站查看
    23. 王丹. RVM在煤自燃预测中的应用研究. 煤. 2022(04): 1-5 .
    24. 张立海,孙建卫,赵兵兵. 储煤仓预防自燃的实践. 选煤技术. 2022(02): 41-44 .
    25. 郭甘霖. 基于PLC的综采设备状态监测系统设计研究. 机械管理开发. 2022(06): 270-271 .
    26. 王民华,牛显. 基于数据重构增强的采空区遗煤自燃预测模型. 煤矿安全. 2022(09): 86-93 .
    27. 华坤鹏,逯园坤. 烟煤物理吸附氧气的吸附机理. 煤矿安全. 2022(11): 48-55 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (243) PDF downloads (44) Cited by(38)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return