CHEN Pan, MA Xinmin, XIANG Junjie, et al. Research on prediction of support parameters for coal roadways[J]. Journal of Mine Automation,2023,49(10):133-141. DOI: 10.13272/j.issn.1671-251x.2022120047
Citation: CHEN Pan, MA Xinmin, XIANG Junjie, et al. Research on prediction of support parameters for coal roadways[J]. Journal of Mine Automation,2023,49(10):133-141. DOI: 10.13272/j.issn.1671-251x.2022120047

Research on prediction of support parameters for coal roadways

More Information
  • Received Date: December 14, 2022
  • Revised Date: September 19, 2023
  • Available Online: October 22, 2023
  • Currently, algorithms such as support vector machine (SVM) and random forest (RF) are less applied in the field of coal mine roadway support. The paper studies the applicability of different machine learning models for support parameter design.Thus a higher performance model would be established to achieve reasonable and scientific design of anchor bolt support. Firstly, it is suggested to establish an intelligent prediction database for coal mine roadway support. Through on-site research, questionnaire survey, and literature search, the coal mine roadway samples are collected. The data is processed using methods such as filling in missing values, modifying outliers in box charts, and removing local abnormal factors to establish a coal roadway support database. The paper proposes a coal roadway support parameter prediction model based on synthetic minority oversampling technique (SMOTE) - genetic algorithm (GA) - SVM. The data in the database is divided into training and testing sets. The SMOTE technology is used to balance training samples, and improve the model's fitting capability for minority class samples. The training process uses GA to globally optimize the hyperparameters of SVM, further improving the overall performance of the model. The test results show that the classificaton precision of the SMOTE-GA-SVM model reaches 83.8%, which is 21.8% higher than the traditional SVM model. The machine learning methods such as SVM, artificial neural network (ANN), RF, AdaBoost (ADA), and naive Bayesian classifier (NBC) are introduced into the prediction of coal roadway anchor support parameters. The corresponding support parameter prediction models are established. The comparison results showed that the best to worst prediction models are ranked as SMOTE-GA-SVM, RF, GA-ANN, SVM, NBC, and ADA, with an average classificaton precision of 69.9%. The result verifies the feasibility of machine learning methods in predicting the parameters of coal roadway bolt support. The SMOTE-GA-SVM model is applied in Shanxi Huobaoganhe Coal Mine Co., Ltd., with a precision of 87.5% and strong applicability and reliability.
  • [1]
    康红普. 我国煤矿巷道锚杆支护技术发展60年及展望[J]. 中国矿业大学学报,2016,45(6):1071-1081.

    KANG Hongpu. Sixty years development and prospects of rock bolting technology for underground coal mine roadways in China[J]. Journal of China University of Mining & Technology,2016,45(6):1071-1081.
    [2]
    康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报,2021,40(1):1-30.

    KANG Hongpu. Seventy years development and prospects of strata control technologies for coal mine roadways in China[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):1-30.
    [3]
    单仁亮,彭杨皓,孔祥松,等. 国内外煤巷支护技术研究进展[J]. 岩石力学与工程学报,2019,38(12):2377-2403.

    SHAN Renliang,PENG Yanghao,KONG Xiangsong,et al. Research progress of coal roadway support technology at home and abroad[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(12):2377-2403.
    [4]
    顾清华,江松,李学现,等. 人工智能背景下采矿系统工程发展现状与展望[J]. 金属矿山,2022(5):10-25.

    GU Qinghua,JIANG Song,LI Xuexian,et al. Development status and prospect of mining system engineering under the background of artificial intelligence[J]. Metal Mine,2022(5):10-25.
    [5]
    谢广祥,曹伍富,王德润,等. 基于人工神经网络的煤巷锚杆支护设计研究[J]. 煤炭学报,1999(6):599-604.

    XIE Guangxiang,CAO Wufu,WANG Derun,et al. The study on bolting support design in coal roadway based on artificial neural networks[J]. Journal of China Coal Society,1999(6):599-604.
    [6]
    王茂源. 煤巷锚杆支护设计混合智能系统研究[D]. 北京:中国矿业大学(北京),2016.

    WANG Maoyuan. Hybrid intelligent system on coal roadway bolting design[D]. Beijing:China University of Mining and Technology-Beijing,2016.
    [7]
    王哲哲,许梦国,程爱平,等. 模糊神经网络在巷道支护方案选择中的应用[J]. 化工矿物与加工,2019,48(1):16-19,23.

    WANG Zhezhe,XU Mengguo,CHENG Aiping,et al. Application of fuzzy neural network in selection of roadway support scheme[J]. Industrial Minerals & Processing,2019,48(1):16-19,23.
    [8]
    XU Qingyun,LI Yongming,LU Jie,et al. The use of surrounding rock loosening circle theory combined with elastic-plastic mechanics calculation method and depth learning in roadway support[J]. PLoS ONE,2020,15(7). DOI: 10.1371/journal.pone.0234071.
    [9]
    REN Heng,ZHU Yongjian,WANG Ping,et al. Classification and application of roof stability of bolt supporting coal roadway based on BP neural network[J]. Advances in Civil Engineering,2020. DOI: 10.1155/2020/8838640.
    [10]
    ZHANG Xiliang,NGUYEN H,BUI X,et al. Evaluating and predicting the stability of roadways in tunnelling and underground space using artificial neural network-based particle swarm optimization[J]. Tunnelling and Underground Space Technology,2020,103. DOI: 10.1016/j.tust.2020.103517.
    [11]
    PU Yuanyuan,APEL D,HALL R. Using machine learning approach for microseismic events recognition in underground excavations:comparison of ten frequently-used models[J]. Engineering Geology,2020. DOI: 10.1016/j.enggeo.2020.105519.
    [12]
    马鑫民,范皓宇,林天舒,等. 基于GA−SVM的煤矿岩巷爆破效果智能预测[J]. 煤炭工程,2019,51(5):148-153.

    MA Xinmin,FAN Haoyu,LIN Tianshu,et al. Intelligent prediction of blasting effect of coal mine roadway based on GA-SVM[J]. Coal Engineering,2019,51(5):148-1533.
    [13]
    MAHDEVARI S,KHODABAKHSHI M B. A hierarchical local-model tree for predicting roof displacement in longwall tailgates[J]. Neural Computing and Applications,2021,33(21):14909-14928. DOI: 10.1007/s00521-021-06127-y
    [14]
    赵汝星. 基于随机森林的回采巷道围岩稳定性分类[J]. 煤矿安全,2014,45(11):200-202,206.

    ZHAO Ruxing. Classification of roadway surrounding rock stability based on random forest[J]. Safety in Coal Mines,2014,45(11):200-202,206.
    [15]
    汪海燕,黎建辉,杨风雷. 支持向量机理论及算法研究综述[J]. 计算机应用研究,2014,31(5):1281-1286.

    WANG Haiyan,LI Jianhui,YANG Fenglei. Overview of support vector machine analysis and algorithm[J]. Application Research of Computers,2014,31(5):1281-1286.
    [16]
    JU Xuchan,YAN Zhenghao,WANG Tianhe,et al. Overview of optimization algorithms for large-scale support vector machines[C]. IEEE International Conference on Data Mining Workshops,Ningbo,2021:909-916.
    [17]
    CHAHAR V,KATOCH S,CHAUHAN S S. A review on genetic algorithm:past,present,and future[J]. Multimedia Tools and Applications,2020,80(5):8091-8126.
    [18]
    谭文侃,叶义成,胡南燕,等. LOF与改进SMOTE算法组合的强烈岩爆预测[J]. 岩石力学与工程学报,2021,40(6):1186-1194.

    TAN Wenkan,YE Yicheng,HU Nanyan,et al. Severe rock burst prediction based on the combination of LOF and improved SMOTE algorithm[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(6):1186-1194.
    [19]
    FENG Shuo,KEUNG J,YU Xiao,et al. Investigation on the stability of SMOTE-based oversampling techniques in software defect prediction[J]. Information and Software Technology,2021,139(6). DOI: 10.1016/j.infsof.2021.106662.
    [20]
    CHAO Ying,YIN Kunlong,ZHOU Chao,et al. Establishment of landslide groundwater level prediction model based on GA-SVM and influencing factor analysis[J]. Sensors,2020,20(3):845. DOI: 10.3390/s20030845
    [21]
    吕红燕,冯倩. 随机森林算法研究综述[J]. 河北省科学院学报,2019,36(3):37-41. DOI: 10.16191/j.cnki.hbkx.2019.03.005

    LYU Hongyan,FENG Qian. A review of random forests algorithm[J]. Journal of the Hebei Academy of Sciences,2019,36(3):37-41. DOI: 10.16191/j.cnki.hbkx.2019.03.005
  • Related Articles

    [1]ZHENG Tiehua, WANG Fei, ZHAO Gelan, DU Chunhui. Automatic vibration fault detection of coal mine explosion-proof electrical equipment based on One-Class Support Vector Machine[J]. Journal of Mine Automation, 2025, 51(2): 106-112. DOI: 10.13272/j.issn.1671-251x.2024090053
    [2]JIN Bing, ZHANG Lang, LI Wei, ZHENG Yi, LIU Yanqing, ZHANG Yibin. Rapid prediction algorithm for flow field in fully mechanized excavation face based on POD and machine learning[J]. Journal of Mine Automation, 2024, 50(10): 97-104, 119. DOI: 10.13272/j.issn.1671-251x.2024080090
    [3]LI Tieniu, HU Binxin, LI Huakun, GENG Wencheng, HAO Pengcheng, JI Xubo, SUN Zengrong, ZHU Feng, ZHANG Hua, YANG Chengquan. Automatic picking method of microseismic first arrival time based on improved support vector machine[J]. Journal of Mine Automation, 2023, 49(3): 63-69. DOI: 10.13272/j.issn.1671-251x.2022050081
    [4]HU Yelin, DENG Xiang, ZHENG Xiaoliang. Design of fuzzy PID controller for mine local ventilator optimized by improved genetic algorithm[J]. Journal of Mine Automation, 2021, 47(9): 38-44.. DOI: 10.13272/j.issn.1671-251x.2021030086
    [5]WANG Anyi, XI Xi. Forecasting of underground field intensity based on LS-SVM optimized by genetic algorithm[J]. Journal of Mine Automation, 2016, 42(12): 46-50. DOI: 10.13272/j.issn.1671-251x.2016.12.010
    [6]LV Ting-ting, MA Xiao-ping, CHEN Li. Simulation of PID control of jig discharging system optimized by genetic algorithm[J]. Journal of Mine Automation, 2013, 39(1): 67-70.
    [7]SUN Yun-xiao, FANG Jian, MA Xiao-ping. Research of Prediction of Coal and Gas Outburst Based on Semi-supervised Learning and Support Vector Machine[J]. Journal of Mine Automation, 2012, 38(11): 40-42.
    [8]WANG Yong, CHENG Can, DAI Ming-jun, SUN Yong. An Optimized Method for Semi-supervised Support Vector Machines[J]. Journal of Mine Automation, 2010, 36(12): 47-50.
    [9]ZHOU Xin, MIAO Chang-yun, LI Yan-feng, WU Zhi-gang. Optimization of CS-ACELP Voice Code Algorithm and Its Implementation on DSP[J]. Journal of Mine Automation, 2009, 35(12): 69-72.
    [10]LIU Rui-fang, MEI Xiao-a. Nonlinear Correction of Methane Sensor Based on Least Square Support Vector Machine[J]. Journal of Mine Automation, 2009, 35(5): 8-12.
  • Cited by

    Periodical cited type(7)

    1. 王利民,朱立江,刘金鸽. 基于随机森林回归模型的煤胶质层指数预测. 中国科技论文. 2025(03): 267-276 .
    2. 王利民,朱立江,刘金鸽. 基于太赫兹光谱和随机森林算法的煤挥发分含量预测. 中国无机分析化学. 2025(06): 867-873 .
    3. 田利红. 煤矿工作面动压巷道支护施工方案分析. 能源与节能. 2024(04): 281-284 .
    4. 侯德俊,梁熙文,张昊辰,韩君格. 基于粒子群优化支持向量机的地下洞室支护设计. 西北水电. 2024(03): 101-107 .
    5. 孙兴发. 基于SSA-GBDT模型的巷道支护参数优化. 能源技术与管理. 2024(04): 102-105 .
    6. 史沁彬. 矩形大断面煤巷超前循环护架设计研究. 煤. 2024(11): 49-52 .
    7. 于远祥,沈鹏,张永亮,王有发. 动静组合荷载下隧道锚固围岩累积损伤效应与支护优化. 西安科技大学学报. 2024(06): 1095-1106 .

    Other cited types(0)

Catalog

    LIANG Tinghao

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (194) PDF downloads (50) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return