Citation: | KONG Erwei, ZHANG Yabang, LI Jiayue, et al. An enhancement method for low light images in coal mines[J]. Journal of Mine Automation,2023,49(4):62-69, 85. DOI: 10.13272/j.issn.1671-251x.2022110054 |
[1] |
钱鸣高,许家林,王家臣. 再论煤炭的科学开采[J]. 煤炭学报,2018,43(1):1-13.
QIAN Minggao,XU Jialin,WANG Jiachen. Further on the sustainable mining of coal[J]. Journal of China Coal Society,2018,43(1):1-13.
|
[2] |
谢斌红,袁帅,龚大立. 基于RDB−YOLOv4的煤矿井下有遮挡行人检测[J]. 计算机工程与应用,2022,58(5):200-207.
XIE Binhong,YUAN Shuai,GONG Dali. Detection of blocked pedestrians based on RDB-YOLOv4 in coal mine[J]. Computer Engineering and Applications,2022,58(5):200-207.
|
[3] |
李少荣. 基于改进直方图均衡化的红外图像增强技术的研究[J]. 工业控制计算机,2022,35(12):52-53,56. DOI: 10.3969/j.issn.1001-182X.2022.12.019
LI Shaorong. Infrared image enhancement technology based on improved histogram equalization[J]. Industrial Control Computer,2022,35(12):52-53,56. DOI: 10.3969/j.issn.1001-182X.2022.12.019
|
[4] |
吕侃徽,张大兴. 基于自适应直方图均衡化耦合拉普拉斯变换的红外图像增强算法[J]. 光学技术,2021,47(6):747-753. DOI: 10.13741/j.cnki.11-1879/o4.2021.06.018
LYU Kanhui,ZHANG Daxing. Infrared image enhancement algorithm based on adaptive histogram equalization coupled with Laplace transform[J]. Optical Technique,2021,47(6):747-753. DOI: 10.13741/j.cnki.11-1879/o4.2021.06.018
|
[5] |
杨微,姚冰莹,朱晓凤. 基于Retinex理论的低照度图像增强技术研究[J]. 现代计算机,2020(29):48-54. DOI: 10.3969/j.issn.1007-1423.2020.29.008
YANG Wei,YAO Bingying,ZHU Xiaofeng. Reserch on low illumination image enhancement technology based on Retinex theory[J]. Modern Computer,2020(29):48-54. DOI: 10.3969/j.issn.1007-1423.2020.29.008
|
[6] |
陈超. 改进单尺度Retinex算法在图像增强中的应用[J]. 计算机应用与软件,2013,30(4):55-57. DOI: 10.3969/j.issn.1000-386x.2013.04.016
CHEN Chao. Application of improved single scale Retinex algorithm in image enhancement[J]. Computer Applications and Software,2013,30(4):55-57. DOI: 10.3969/j.issn.1000-386x.2013.04.016
|
[7] |
赵晓霞,王汝琳,李雪艳. 基于多尺度Retinex的雾天降质图象增强算法[J]. 工矿自动化,2009,35(10):62-66.
ZHAO Xiaoxia,WANG Rulin,LI Xueyan. Enhancement algorithm of fog-degraded image based on multiscale Retinex[J]. Industry and Mine Automation,2009,35(10):62-66.
|
[8] |
WANG Shuhang,ZHENG Jin,HU Haimiao,et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing,2013,22(9):3538-3548. DOI: 10.1109/TIP.2013.2261309
|
[9] |
GUO Xiaojie,LI Yu,LING Haibin. LIME:low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing,2016,26(2):982-993.
|
[10] |
胡建平,郝梦云,杜影,等. 结构和纹理感知的Retinex融合红外与可见光图像[J]. 光学精密工程,2022,30(24):3225-3238. DOI: 10.37188/OPE.20223024.3225
HU Jianping,HAO Mengyun,DU Ying,et al. Fusion of infrared and visible images via structure and texture-aware Retinex[J]. Optics and Precision Engineering,2022,30(24):3225-3238. DOI: 10.37188/OPE.20223024.3225
|
[11] |
DONG Xuan, WANG Guan, PANG Yi, et al. Fast efficient algorithm for enhancement of low lighting video[C]. IEEE International Conference on Multimedia and Expo, Barcelona, 2011: 1-6.
|
[12] |
LORE K G,AKINTAYO A,SARKAR S. LLNet:a deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition,2017,61:650-662. DOI: 10.1016/j.patcog.2016.06.008
|
[13] |
TAO Li, ZHU Chuang, XIANG Guoqing, et al. LLCNN: a convolutional neural network for low-light image enhancement[C]. IEEE Visual Communications and Image Processing, Petersburg, 2017: 10-13.
|
[14] |
WANG Wenjing, WEI Chen, YANG Wenhan, et al. GLADNet: low-light enhancement network with global awareness[C]. 13th IEEE International Conference on Automatic Face & Gesture Recognition, Xi'an, 2018: 15-19.
|
[15] |
WEI Chen, WANG Wenjing, YANG Wenhan, et al. Deep Retinex decomposition for low-light enhancement[C]. British Machine Vision Conference, Newcastle, 2018: 1-12.
|
[16] |
王满利, 张航, 李佳悦, 等. 基于深度神经网络的矿井下低光照图像增强算法[J/OL]. 煤炭科学技术: 1-13[2023-04-20]. https://doi.org/10.13199/j.cnki.cst.2022-1626.
WANG Manli, ZHANG Hang, LI Jiayue, et al. Deep neural network-based image enhancement algorithm for low-illumination images underground mines[J/OL]. Coal Science and Technology: 1-13[2023-04-20]. https://doi.org/10.13199/j.cnki.cst.2022-1626.
|
[17] |
GUO Chunle, LI Chongyi, GUO Jichang, et al. Zero-reference deep curve estimation for low-light image enhancement[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 13-19.
|
[18] |
LYU Feifan, LU Feng, WU Jianhua, et al. MBLLEN: low-light image/video enhancement using CNNs[C]. British Machine Vision Conference, Newcastle, 2018: 220-233.
|
[19] |
朱新山,姚思如,孙彪,等. 图像质量评价:融合视觉特性与结构相似性指标[J]. 哈尔滨工业大学学报,2018,50(5):121-128.
ZHU Xinshan,YAO Siru,SUN Biao,et al. Image quality assessment:combining the characteristics of HVS and structural similarity index[J]. Journal of Harbin Institute of Technology,2018,50(5):121-128.
|
[20] |
孙彦景,杨玉芬,刘东林,等. 基于内在生成机制的多尺度结构相似性图像质量评价[J]. 电子与信息学报,2016,38(1):127-134.
SUN Yanjing,YANG Yufen,LIU Donglin,et al. Multiple-scale structural similarity image quality assessment based on internal generative mechanism[J]. Journal of Electronics & Information Technology,2016,38(1):127-134.
|
[21] |
单月,刘段,万晓霞. 无参考图像质量评价研究现状与前景分析[J]. 包装工程,2022,43(13):296-304. DOI: 10.19554/j.cnki.1001-3563.2022.13.037
SHAN Yue,LIU Duan,WAN Xiaoxia. Current research status and prospect of no-reference image quality assessment[J]. Packaging Engineering,2022,43(13):296-304. DOI: 10.19554/j.cnki.1001-3563.2022.13.037
|
[1] | LIU Yao, LIU Zaibin, XING Zhen. Deep learning-based feature extraction and intelligent screening method for time-lapse resistivity monitoring data in mines[J]. Journal of Mine Automation, 2025, 51(7): 59-65. DOI: 10.13272/j.issn.1671-251x.2025050016 |
[2] | GUO Xiaoyuan, ZHU Meiqiang, TIAN Jun, ZHU Beibei. Detection and recognition of unsafe behaviors of underground coal miners based on deep learning[J]. Journal of Mine Automation, 2025, 51(3): 138-147. DOI: 10.13272/j.issn.1671-251x.2025030011 |
[3] | ZHANG Lihui. Mask occlusion face recognition algorithm based on neural network model with optimized loss function[J]. Journal of Mine Automation, 2024, 50(S1): 15-20. |
[4] | ZUO Mingming, ZHANG Xi, YANG Zihao, SUN Qifei, ZHANG Mengchao, ZHANG Yuan, LI Hu. Intelligent monitoring method for conveyor belt misalignment based on deep learning[J]. Journal of Mine Automation, 2024, 50(12): 166-172, 182. DOI: 10.13272/j.issn.1671-251x.2024030043 |
[5] | HE Kai, CHENG Gang, WANG Xi, GE Qingnan, ZHANG Hui, ZHAO Dongyang. Research on coal gangue recognition method based on CED-YOLOv5s model[J]. Journal of Mine Automation, 2024, 50(2): 49-56, 82. DOI: 10.13272/j.issn.1671-251x.2023090065 |
[6] | ZHANG Lei, WANG Haosheng, LEI Weiqiang, WANG Bin, LIN Jiangong. Coal gangue target detection of belt conveyor based on YOLOv5s-SDE[J]. Journal of Mine Automation, 2023, 49(4): 106-112. DOI: 10.13272/j.issn.1671-251x.2022080043 |
[7] | GUI Fangjun, LI Yao. Coal gangue detection based on CBA-YOLO model[J]. Journal of Mine Automation, 2022, 48(6): 128-133. DOI: 10.13272/j.issn.1671-251x.2022020033 |
[8] | HU Jinghao, GAO Yan, ZHANG Hongjuan, JIN Baoquan. Research on the identification method of non-coal foreign object ofbelt conveyor based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 57-62. DOI: 10.13272/j.issn.1671-251x.2021020041 |
[9] | ZHANG Mengchao, ZHOU Manshan, ZHANG Yuan, YU Yan, LI Hu. Damage detection method for mine conveyor belt based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 51-56. DOI: 10.13272/j.issn.1671-251x.2021040010 |
[10] | WANG Hong-yuan, SHI Lian-min, ZHOU Yue, CHENG Qi-cai, YANG Xiao-ying. Method of Digital Image Processing Based on DSP and S-function and Its Implementatio[J]. Journal of Mine Automation, 2009, 35(3): 24-27. |
1. |
李顺勇,李青辉,邢煜曼. 基于轻量化网络和迁移学习的岩石智能识别. 科学技术与工程. 2025(05): 1774-1782 .
![]() | |
2. |
汪学明,刘峰. 基于RV1126的井下运输煤流感应传感器设计. 煤矿机电. 2025(01): 31-36 .
![]() | |
3. |
江松,崔智翔,代碧波,饶彬舰,何润丰,王浩宇. 暗环境适应性的基于SLAM的煤矿井下机器人定位方法. 煤炭科学技术. 2025(05): 349-361 .
![]() | |
4. |
朱代先,秋强,孔浩然,胡其胜,刘树林. 基于直线段检测和LT描述符的矿井图像线特征匹配算法. 工矿自动化. 2024(02): 72-82 .
![]() | |
5. |
王泰基. 基于ITLBO-AFSA优化FCM算法的矿井图像增强. 工矿自动化. 2024(S1): 25-28 .
![]() | |
6. |
雷声,张金虎,李艳鹏,刘培源. 基于HSV空间的煤矿不均匀照度图像修复算法研究. 煤炭科学技术. 2024(S2): 384-392 .
![]() | |
7. |
张立亚. 基于生成对抗网络的带式输送机异物检测方法. 工矿自动化. 2023(11): 53-59 .
![]() | |
8. |
郝博南. 基于去尘估计和多重曝光融合的煤矿井下图像增强方法. 工矿自动化. 2023(11): 100-106 .
![]() |