KONG Erwei, ZHANG Yabang, LI Jiayue, et al. An enhancement method for low light images in coal mines[J]. Journal of Mine Automation,2023,49(4):62-69, 85. DOI: 10.13272/j.issn.1671-251x.2022110054
Citation: KONG Erwei, ZHANG Yabang, LI Jiayue, et al. An enhancement method for low light images in coal mines[J]. Journal of Mine Automation,2023,49(4):62-69, 85. DOI: 10.13272/j.issn.1671-251x.2022110054

An enhancement method for low light images in coal mines

More Information
  • Received Date: November 13, 2022
  • Revised Date: April 19, 2023
  • Available Online: April 26, 2023
  • Underground lighting in coal mines is limited. There is a large amount of dust and mist, resulting in low contrast, uneven lighting, weak detail information, and a large amount of noise in the collected images. The image enhancement methods based on traditional models have poor robustness, often causing excessive image enhancement and color distortion. Most image enhancement methods based on deep learning do not consider the noise amplification caused by enhancement. In order to solve the above problems, an enhancement method for low light images in coal mines is proposed. The image enhancement network is constructed by using convolutional neural networks. The network includes feature extraction modules, enhancement modules, and fusion modules. The feature extraction module convolves the input image to varying degrees, extracts multi-level image features, and obtains multiple feature layers. The enhancement module enhances the extracted feature layers through sub-networks to enhance different levels of detail features. The fusion module fuses the enhanced feature layers and outputs enhanced images. Then, through the constraints of the structure loss function, content loss function and area loss function, the image quality is improved. The image color distortion and noise amplification are effectively suppressed to obtain the final enhanced image. The experimental results show that this method can effectively improve the brightness and contrast of low light images in coal mines. The method has strong noise suppression capability, enabling the image to better restore the original details while avoiding overexposure or color distortion.
  • [1]
    钱鸣高,许家林,王家臣. 再论煤炭的科学开采[J]. 煤炭学报,2018,43(1):1-13.

    QIAN Minggao,XU Jialin,WANG Jiachen. Further on the sustainable mining of coal[J]. Journal of China Coal Society,2018,43(1):1-13.
    [2]
    谢斌红,袁帅,龚大立. 基于RDB−YOLOv4的煤矿井下有遮挡行人检测[J]. 计算机工程与应用,2022,58(5):200-207.

    XIE Binhong,YUAN Shuai,GONG Dali. Detection of blocked pedestrians based on RDB-YOLOv4 in coal mine[J]. Computer Engineering and Applications,2022,58(5):200-207.
    [3]
    李少荣. 基于改进直方图均衡化的红外图像增强技术的研究[J]. 工业控制计算机,2022,35(12):52-53,56. DOI: 10.3969/j.issn.1001-182X.2022.12.019

    LI Shaorong. Infrared image enhancement technology based on improved histogram equalization[J]. Industrial Control Computer,2022,35(12):52-53,56. DOI: 10.3969/j.issn.1001-182X.2022.12.019
    [4]
    吕侃徽,张大兴. 基于自适应直方图均衡化耦合拉普拉斯变换的红外图像增强算法[J]. 光学技术,2021,47(6):747-753. DOI: 10.13741/j.cnki.11-1879/o4.2021.06.018

    LYU Kanhui,ZHANG Daxing. Infrared image enhancement algorithm based on adaptive histogram equalization coupled with Laplace transform[J]. Optical Technique,2021,47(6):747-753. DOI: 10.13741/j.cnki.11-1879/o4.2021.06.018
    [5]
    杨微,姚冰莹,朱晓凤. 基于Retinex理论的低照度图像增强技术研究[J]. 现代计算机,2020(29):48-54. DOI: 10.3969/j.issn.1007-1423.2020.29.008

    YANG Wei,YAO Bingying,ZHU Xiaofeng. Reserch on low illumination image enhancement technology based on Retinex theory[J]. Modern Computer,2020(29):48-54. DOI: 10.3969/j.issn.1007-1423.2020.29.008
    [6]
    陈超. 改进单尺度Retinex算法在图像增强中的应用[J]. 计算机应用与软件,2013,30(4):55-57. DOI: 10.3969/j.issn.1000-386x.2013.04.016

    CHEN Chao. Application of improved single scale Retinex algorithm in image enhancement[J]. Computer Applications and Software,2013,30(4):55-57. DOI: 10.3969/j.issn.1000-386x.2013.04.016
    [7]
    赵晓霞,王汝琳,李雪艳. 基于多尺度Retinex的雾天降质图象增强算法[J]. 工矿自动化,2009,35(10):62-66.

    ZHAO Xiaoxia,WANG Rulin,LI Xueyan. Enhancement algorithm of fog-degraded image based on multiscale Retinex[J]. Industry and Mine Automation,2009,35(10):62-66.
    [8]
    WANG Shuhang,ZHENG Jin,HU Haimiao,et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing,2013,22(9):3538-3548. DOI: 10.1109/TIP.2013.2261309
    [9]
    GUO Xiaojie,LI Yu,LING Haibin. LIME:low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing,2016,26(2):982-993.
    [10]
    胡建平,郝梦云,杜影,等. 结构和纹理感知的Retinex融合红外与可见光图像[J]. 光学精密工程,2022,30(24):3225-3238. DOI: 10.37188/OPE.20223024.3225

    HU Jianping,HAO Mengyun,DU Ying,et al. Fusion of infrared and visible images via structure and texture-aware Retinex[J]. Optics and Precision Engineering,2022,30(24):3225-3238. DOI: 10.37188/OPE.20223024.3225
    [11]
    DONG Xuan, WANG Guan, PANG Yi, et al. Fast efficient algorithm for enhancement of low lighting video[C]. IEEE International Conference on Multimedia and Expo, Barcelona, 2011: 1-6.
    [12]
    LORE K G,AKINTAYO A,SARKAR S. LLNet:a deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition,2017,61:650-662. DOI: 10.1016/j.patcog.2016.06.008
    [13]
    TAO Li, ZHU Chuang, XIANG Guoqing, et al. LLCNN: a convolutional neural network for low-light image enhancement[C]. IEEE Visual Communications and Image Processing, Petersburg, 2017: 10-13.
    [14]
    WANG Wenjing, WEI Chen, YANG Wenhan, et al. GLADNet: low-light enhancement network with global awareness[C]. 13th IEEE International Conference on Automatic Face & Gesture Recognition, Xi'an, 2018: 15-19.
    [15]
    WEI Chen, WANG Wenjing, YANG Wenhan, et al. Deep Retinex decomposition for low-light enhancement[C]. British Machine Vision Conference, Newcastle, 2018: 1-12.
    [16]
    王满利, 张航, 李佳悦, 等. 基于深度神经网络的矿井下低光照图像增强算法[J/OL]. 煤炭科学技术: 1-13[2023-04-20]. https://doi.org/10.13199/j.cnki.cst.2022-1626.

    WANG Manli, ZHANG Hang, LI Jiayue, et al. Deep neural network-based image enhancement algorithm for low-illumination images underground mines[J/OL]. Coal Science and Technology: 1-13[2023-04-20]. https://doi.org/10.13199/j.cnki.cst.2022-1626.
    [17]
    GUO Chunle, LI Chongyi, GUO Jichang, et al. Zero-reference deep curve estimation for low-light image enhancement[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 13-19.
    [18]
    LYU Feifan, LU Feng, WU Jianhua, et al. MBLLEN: low-light image/video enhancement using CNNs[C]. British Machine Vision Conference, Newcastle, 2018: 220-233.
    [19]
    朱新山,姚思如,孙彪,等. 图像质量评价:融合视觉特性与结构相似性指标[J]. 哈尔滨工业大学学报,2018,50(5):121-128.

    ZHU Xinshan,YAO Siru,SUN Biao,et al. Image quality assessment:combining the characteristics of HVS and structural similarity index[J]. Journal of Harbin Institute of Technology,2018,50(5):121-128.
    [20]
    孙彦景,杨玉芬,刘东林,等. 基于内在生成机制的多尺度结构相似性图像质量评价[J]. 电子与信息学报,2016,38(1):127-134.

    SUN Yanjing,YANG Yufen,LIU Donglin,et al. Multiple-scale structural similarity image quality assessment based on internal generative mechanism[J]. Journal of Electronics & Information Technology,2016,38(1):127-134.
    [21]
    单月,刘段,万晓霞. 无参考图像质量评价研究现状与前景分析[J]. 包装工程,2022,43(13):296-304. DOI: 10.19554/j.cnki.1001-3563.2022.13.037

    SHAN Yue,LIU Duan,WAN Xiaoxia. Current research status and prospect of no-reference image quality assessment[J]. Packaging Engineering,2022,43(13):296-304. DOI: 10.19554/j.cnki.1001-3563.2022.13.037
  • Related Articles

    [1]​​LIU Yao, LIU Zaibin, XING Zhen. Deep learning-based feature extraction and intelligent screening method for time-lapse resistivity monitoring data in mines[J]. Journal of Mine Automation, 2025, 51(7): 59-65. DOI: 10.13272/j.issn.1671-251x.2025050016
    [2]GUO Xiaoyuan, ZHU Meiqiang, TIAN Jun, ZHU Beibei. Detection and recognition of unsafe behaviors of underground coal miners based on deep learning[J]. Journal of Mine Automation, 2025, 51(3): 138-147. DOI: 10.13272/j.issn.1671-251x.2025030011
    [3]ZHANG Lihui. Mask occlusion face recognition algorithm based on neural network model with optimized loss function[J]. Journal of Mine Automation, 2024, 50(S1): 15-20.
    [4]ZUO Mingming, ZHANG Xi, YANG Zihao, SUN Qifei, ZHANG Mengchao, ZHANG Yuan, LI Hu. Intelligent monitoring method for conveyor belt misalignment based on deep learning[J]. Journal of Mine Automation, 2024, 50(12): 166-172, 182. DOI: 10.13272/j.issn.1671-251x.2024030043
    [5]HE Kai, CHENG Gang, WANG Xi, GE Qingnan, ZHANG Hui, ZHAO Dongyang. Research on coal gangue recognition method based on CED-YOLOv5s model[J]. Journal of Mine Automation, 2024, 50(2): 49-56, 82. DOI: 10.13272/j.issn.1671-251x.2023090065
    [6]ZHANG Lei, WANG Haosheng, LEI Weiqiang, WANG Bin, LIN Jiangong. Coal gangue target detection of belt conveyor based on YOLOv5s-SDE[J]. Journal of Mine Automation, 2023, 49(4): 106-112. DOI: 10.13272/j.issn.1671-251x.2022080043
    [7]GUI Fangjun, LI Yao. Coal gangue detection based on CBA-YOLO model[J]. Journal of Mine Automation, 2022, 48(6): 128-133. DOI: 10.13272/j.issn.1671-251x.2022020033
    [8]HU Jinghao, GAO Yan, ZHANG Hongjuan, JIN Baoquan. Research on the identification method of non-coal foreign object ofbelt conveyor based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 57-62. DOI: 10.13272/j.issn.1671-251x.2021020041
    [9]ZHANG Mengchao, ZHOU Manshan, ZHANG Yuan, YU Yan, LI Hu. Damage detection method for mine conveyor belt based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 51-56. DOI: 10.13272/j.issn.1671-251x.2021040010
    [10]WANG Hong-yuan, SHI Lian-min, ZHOU Yue, CHENG Qi-cai, YANG Xiao-ying. Method of Digital Image Processing Based on DSP and S-function and Its Implementatio[J]. Journal of Mine Automation, 2009, 35(3): 24-27.
  • Cited by

    Periodical cited type(8)

    1. 李顺勇,李青辉,邢煜曼. 基于轻量化网络和迁移学习的岩石智能识别. 科学技术与工程. 2025(05): 1774-1782 .
    2. 汪学明,刘峰. 基于RV1126的井下运输煤流感应传感器设计. 煤矿机电. 2025(01): 31-36 .
    3. 江松,崔智翔,代碧波,饶彬舰,何润丰,王浩宇. 暗环境适应性的基于SLAM的煤矿井下机器人定位方法. 煤炭科学技术. 2025(05): 349-361 .
    4. 朱代先,秋强,孔浩然,胡其胜,刘树林. 基于直线段检测和LT描述符的矿井图像线特征匹配算法. 工矿自动化. 2024(02): 72-82 . 本站查看
    5. 王泰基. 基于ITLBO-AFSA优化FCM算法的矿井图像增强. 工矿自动化. 2024(S1): 25-28 . 本站查看
    6. 雷声,张金虎,李艳鹏,刘培源. 基于HSV空间的煤矿不均匀照度图像修复算法研究. 煤炭科学技术. 2024(S2): 384-392 .
    7. 张立亚. 基于生成对抗网络的带式输送机异物检测方法. 工矿自动化. 2023(11): 53-59 . 本站查看
    8. 郝博南. 基于去尘估计和多重曝光融合的煤矿井下图像增强方法. 工矿自动化. 2023(11): 100-106 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (539) PDF downloads (110) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return