Citation: | MIAO Changyun, SUN Dandan. Research on fault detection of belt conveyor drum based on improved YOLOv5s[J]. Journal of Mine Automation,2023,49(7):41-48. DOI: 10.13272/j.issn.1671-251x.2022100039 |
[1] |
ANDREJIOVA M,GRINCOVA A,MARASOVA D. Measurement and simulation of impact wear damage to industrial conveyor belts[J]. Wear,2016,368:400-407.
|
[2] |
刘洋. 机器视觉的输送带纵向撕裂故障检测系统信号采集器的研究[D]. 天津: 天津工业大学, 2016.
LIU Yang. Study on signal collector of conveyor belt longitudinal tear fault detection system for machine vision[D]. Tianjin: Tianjin Polytechnic University, 2016.
|
[3] |
韩越. 带式输送机驱动滚筒轴承故障特征提取分析研究[J]. 煤矿机械,2021,42(10):162-165.
HAN Yue. Analysis and study on fault feature extraction of driving roller bearing of belt conveyor[J]. Coal Mine Machinery,2021,42(10):162-165.
|
[4] |
李丹宁,郑闯. 一种模糊神经网络的采煤机滚筒温度实时故障预警方法[J]. 煤炭科学技术,2021,49(增刊1):161-166.
LI Danning,ZHENG Chuang. A real-time fault early warning method of shearer drum temperature based on fuzzy neural network[J]. Coal Science and Technology,2021,49(S1):161-166.
|
[5] |
张强. 基于新型检测方法的带式输送机滚筒故障诊断[J]. 机械管理开发,2022,37(6):144-145,151.
ZHANG Qiang. Fault diagnosis of belt conveyor roller based on new detection method[J]. Mechanical Management and Development,2022,37(6):144-145,151.
|
[6] |
丁秀荣,薛正福,王芝兰. 矿用带式输送机滚筒故障检测系统应用研究[J]. 能源与环保,2022,44(4):205-210.
DING Xiurong,XUE Zhengfu,WANG Zhilan. Application research on fault detection system of mine belt conveyor roller running[J]. China Energy and Environmental Protection,2022,44(4):205-210.
|
[7] |
李现国,李斌,刘宗鹏,等. 井下视频行人检测方法[J]. 工矿自动化,2020,46(2):54-58.
LI Xianguo,LI Bin,LIU Zongpeng,et al. Underground video pedestrian detection method[J]. Industry and Mine Automation,2020,46(2):54-58.
|
[8] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]. The 29th IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 779-788.
|
[9] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y, et al. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2021-06-04]. https://arxiv.org/abs/2004.10934.
|
[10] |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2021-06-04]. https://arxiv.org/abs/1804.02767.
|
[11] |
SINGH S K. Multiple fault detection of rolling bearing through ensemble empirical mode decomposition of vibration signal[J]. International Journal of Engineering and Advanced Technology,2019,9(2):2724-2726. DOI: 10.35940/ijeat.B3562.129219
|
[12] |
潘杨,张守京,杨文彬. 基于改进YOLOv5的棉花异纤检测方法[J]. 棉纺织技术,2022,50(10):37-43.
PAN Yang,ZHANG Shoujing,YANG Wenbin. Detection method of foreign fiber in cotton based on improved YOLOv5[J]. Cotton Textile Technology,2022,50(10):37-43.
|
[13] |
孙耀泽,高军伟. 基于改进YOLOv5的轮对踏面缺陷检测[J]. 激光与光电子学进展,2022,59(22):228-234.
SUN Yaoze,GAO Junwei. Defect detection of wheel set tread based on improved YOLOv5[J]. Laser & Optoelectronics Progress,2022,59(22):228-234.
|
[14] |
LIN T S, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, 2017: 936-944.
|
[15] |
LIU Shu, QI Lu, QIN Haifeng, et al. Path aggregation network for instance segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 8759 -8768.
|
[16] |
章程军,胡晓兵,牛洪超. 基于改进YOLOv5的车辆目标检测研究[J]. 四川大学学报(自然科学版),2022,59(5):79-87.
ZHANG Chengjun,HU Xiaobing,NIU Hongchao. Vehicle object detection based on improved YOLOv5 method[J]. Journal of Sichuan University(Natural Science Edition),2022,59(5):79-87.
|
[17] |
柏罗,张宏立,王聪. 基于高效注意力和上下文感知的目标跟踪算法[J]. 北京航空航天大学学报,2022,48(7):1222-1232.
BAI Luo,ZHANG Hongli,WANG Cong. Target tracking algorithm based on efficient attention and context awareness[J]. Journal of Beijing University of Aeronautics and Astronautics,2022,48(7):1222-1232.
|
[18] |
袁祎铭,韩婷婷,丁佳骏,等. 基于高效通道注意力机制的龙格库塔去雨网络[J]. 计算机应用,2022,42(增刊1):305-309.
YUAN Yiming,HAN Tingting,DING Jiajun,et al. Runge kutta network based on efficient channel attention mechanism for image deraining[J]. Journal of Computer Applications,2022,42(S1):305-309.
|
[19] |
韩兴,张红英,张媛媛. 基于高效通道注意力网络的人脸表情识别[J]. 传感器与微系统,2021,40(1):118-121. DOI: 10.13873/J.1000-9787(2021)01-0118-04
HAN Xing,ZHANG Hongying,ZHANG Yuanyuan. Facial expression recognition based on high efficient channel attention network[J]. Transducer and Microsystem Technologies,2021,40(1):118-121. DOI: 10.13873/J.1000-9787(2021)01-0118-04
|
[20] |
应宇航,任泰安,李伟,等. 一种基于Jetson Nano深度学习的生活垃圾智能分类桶[J]. 计算技术与自动化,2023,42(2):151-157.
YING Yuhang,REN Tai'an,LI Wei,et al. A Kind of intelligent classified garbage bin based on Jetson Nano deep learning[J]. Computing Technology and Automation,2023,42(2):151-157.
|
[21] |
苏羽康,林鹏程,郭佳. 基于Jetson Nano的智能快递柜设计与实现[J]. 物联网技术,2022,12(7):53-54,58.
SU Yukang,LIN Pengcheng,GUO Jia. Design and implementation of intelligent express cabinet based on Jetson Nano[J]. Internet of Things Technologies,2022,12(7):53-54,58.
|
1. |
高杨,张培航. 可再生能源并网逆变器通信自动化监控方法研究. 长江信息通信. 2024(08): 60-61+64 .
![]() | |
2. |
杨铭轩,刘轩,彭纬伟,陈云云. 基于深度学习的水轮机运转状态识别系统研究. 自动化与仪器仪表. 2023(03): 190-194 .
![]() |