HE Lei, WEI Mingsheng, QIU Xinyu, et al. Research on positioning algorithm of underground personnel based on UWB[J]. Journal of Mine Automation,2022,48(6):134-138. DOI: 10.13272/j.issn.1671-251x.2022020035
Citation: HE Lei, WEI Mingsheng, QIU Xinyu, et al. Research on positioning algorithm of underground personnel based on UWB[J]. Journal of Mine Automation,2022,48(6):134-138. DOI: 10.13272/j.issn.1671-251x.2022020035

Research on positioning algorithm of underground personnel based on UWB

More Information
  • Received Date: February 19, 2022
  • Revised Date: June 04, 2022
  • Available Online: April 05, 2022
  • Aiming at the requirement of high real-time and high precision personnel positioning in underground mine, the positioning algorithm of underground personnel based on ultra wide band (UWB) is studied. The double-sided two-way ranging (DS-TWR) mode is adopted to measure the distance between the positioning base station and the positioning tag. This mode does not need the clock synchronization of the positioning base station and the positioning tag system. Therefore, the positioning precision is improved from the source. According to the ranging information, the weighted least squares (WLS) algorithm and CHAN algorithm are used to estimate the coordinates of the positioning tag. The performance of the two algorithms is compared and analyzed through static and dynamic experiments. The positioning precision is comprehensively evaluated through the root mean square error and the cumulative distribution function (CDF) of the error. The experimental results show that in static experiment, the root mean square errors of CHAN algorithm and WLS algorithm are 5.878 6 cm and 8.007 4 cm respectively. The root mean square error of CHAN algorithm is 26.59% lower than that of WLS algorithm. In dynamic experiment, the root mean square errors of CHAN algorithm and WLS algorithm are 12.2923 cm and 21.1809 cm respectively. The root mean square error of CHAN algorithm is 41.97% lower than that of WLS algorithm. The positioning precision of CHAN algorithm is higher than that of WLS algorithm. And CHAN algorithm is more suitable for underground personnel positioning in coal mines.
  • [1]
    王龙康,李祥春,李安金,等. 我国煤矿安全生产现状分析及改善措施[J]. 中国煤炭,2016,42(9):96-100. DOI: 10.3969/j.issn.1006-530X.2016.09.023

    WANG Longkang,LI Xiangchun,LI Anjin,et al. Analysis and improvement measures on current situation of coal mine safety production in China[J]. China Coal,2016,42(9):96-100. DOI: 10.3969/j.issn.1006-530X.2016.09.023
    [2]
    汪义庭. 基于UWB的无线室内定位系统设计与实现[D]. 淮南: 安徽理工大学, 2019.

    WANG Yiting. Design and implementation of wireless indoor positioning system based on UWB[D]. Huainan: Anhui University of Science and Technology, 2019.
    [3]
    BIANCHI V,CIAMPOLINI P,MUNARI I D. RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes[J]. IEEE Transactions on Instrumentation and Measurement,2019,68(2):566-575. DOI: 10.1109/TIM.2018.2851675
    [4]
    VU-HOANG L, NGUYEN-MANH H, PHAN-DUY C, et al. A new technique to enhance accuracy of WLAN fingerprinting based indoor positioning system[C]//IEEE Fifth International Conference on Communications and Electronics, Danang, 2014.
    [5]
    CHEN X, WANG Z J. Reliable indoor location sensing technique using active RFID[C]//The 2nd International Conference on Industrial Mechatronics and Automation, Wuhan, 2010.
    [6]
    刘鹏媛. 基于UWB的高速弹丸定距关键技术研究及实现[D]. 太原: 中北大学, 2020.

    LIU Pengyuan. Research and implementation of the key technology of high speed projectile distance determination based on UWB[D]. Taiyuan: North University of China, 2020.
    [7]
    严嘉祺. 基于UWB的室内定位系统的算法与误差分析[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    YAN Jiaqi. Algorithm and error analysis of indoor positioning system based on UWB[D]. Harbin: Harbin Institute of Technology, 2020.
    [8]
    陈思远,尹栋,牛轶峰. 基于UWB的SS−TWR改进方法研究与实现[J]. 计算机应用研究,2021,38(11):3398-3402.

    CHEN Siyuan,YIN Dong,NIU Yifeng. Research and implementation of improved SS-TWR method based on UWB[J]. Application Research of Computers,2021,38(11):3398-3402.
    [9]
    SHULE W,ALMANSA C M,QUERALTA J P,et al. UWB-based localization for multi-UAV systems and collaborative heterogeneous multi-robot systems[J]. Procedia Computer Science,2020,175:357-364. DOI: 10.1016/j.procs.2020.07.051
    [10]
    WANG Gang,CAI Shu,LI Youming,et al. A bias-reduced nonlinear WLS method for TDOA/FDOA-based source localization[J]. IEEE Transactions on Vehicular Technology,2016,65(10):8603-8615. DOI: 10.1109/TVT.2015.2508501
    [11]
    LI Aiguo, LUAN Fuzeng. An improved localization algorithm based on CHAN with high positioning accuracy in NLOS-WGN environment[C]//The 10th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, 2018: 332-335.
    [12]
    刘怡佳. 非视距环境下的UWB室内定位技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    LIU Yijia. Research on UWB indoor positioning technology in non-line-of-sight environment[D]. Harbin: Harbin Institute of Technology, 2020.
    [13]
    顾慧东. 基于UWB的室内测距与定位系统[D]. 南京: 南京邮电大学, 2020.

    GU Huidong. Indoor ranging and positioning system based on UWB[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020.
  • Cited by

    Periodical cited type(17)

    1. 冉登科. 屯宝洗煤厂智能照明与人员定位系统一体化设计与应用. 能源与环保. 2025(06)
    2. 陈贤. 基于UWB的TOF与TDOA井下联合定位方法. 煤矿安全. 2025(02): 220-225 .
    3. 杨昊坤,凌宇志,张栋梁. 基于YOLO算法的海上钻井平台人员定位算法研究. 现代传输. 2024(04): 41-44 .
    4. 马光辉,陈莉伟. 基于UWB的隧道内人员定位系统设计研究. 微型电脑应用. 2024(09): 40-44 .
    5. 陈贤,周澍,张蓉. 一种井下人员乘车识别与定位方法. 煤矿安全. 2024(11): 217-221 .
    6. 王媛彬,郭亚茹,刘佳,王旭,吴冰超,刘萌. 基于注意力机制和空洞卷积的CycleGAN煤矿井下低照度图像增强算法. 煤炭科学技术. 2024(S2): 375-383 .
    7. 杨坤. 矿井无轨胶轮车智能化管理系统研究. 工矿自动化. 2023(01): 162-170 . 本站查看
    8. 康俊瑄. 基于微型惯性传感器的井下人员跟踪定位系统. 中国安全生产科学技术. 2023(01): 73-78 .
    9. 郑学召,严瑞锦,蔡国斌,王宝元,何芹健. 矿井动目标精确定位技术及优化方法研究. 工矿自动化. 2023(02): 14-22 . 本站查看
    10. 李斐. 三维环境下的智能水力发电厂移动目标UWB定位方法. 水力发电. 2023(04): 81-86 .
    11. 刘厚荣. 基于5G和UWB融合基站的井下系统应用分析. 自动化与仪器仪表. 2023(05): 318-322+327 .
    12. 鲜炜,杨杰,吴绩伟. 测量精度约束的模糊度搜索定位算法. 计算机应用研究. 2023(07): 2053-2059 .
    13. 刘德龙,柳景斌,龚晓东,邓浩坤. 一种基于UWB位置感知的室内人员安全管控方法. 测绘科学. 2023(06): 38-48 .
    14. 潘世一. 基于视觉定位技术的水力发电厂入侵人员UWB定位方法. 水力发电. 2023(11): 109-114 .
    15. 王文庆,朱梁,吴益凡. 一种基于UWB的CTK-IDS联合定位算法. 西安邮电大学学报. 2023(04): 9-17 .
    16. 李政民. 煤矿智能供电系统综合分析平台设计. 工矿自动化. 2023(S2): 130-132+149 . 本站查看
    17. 郁露,唐超礼,黄友锐,韩涛,徐善永,付家豪. 基于UWB和IMU的煤矿机器人紧组合定位方法研究. 工矿自动化. 2022(12): 79-85 . 本站查看

    Other cited types(18)

Catalog

    Article Metrics

    Article views (249) PDF downloads (57) Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return