DUAN Lihong, DAI Lei, ZHANG Jinling. Prediction of water inrush source of coal seam floor based on Fisher discriminant model[J]. Journal of Mine Automation,2022,48(4):128-134. DOI: 10.13272/j.issn.1671-251x.2021110019
Citation: DUAN Lihong, DAI Lei, ZHANG Jinling. Prediction of water inrush source of coal seam floor based on Fisher discriminant model[J]. Journal of Mine Automation,2022,48(4):128-134. DOI: 10.13272/j.issn.1671-251x.2021110019

Prediction of water inrush source of coal seam floor based on Fisher discriminant model

More Information
  • Received Date: November 07, 2021
  • Revised Date: March 14, 2022
  • Available Online: March 04, 2022
  • In order to solve the problems of low accuracy mine water inrush source discriminant method for mine floor water inrush source discrimination, taking the second level coal seam of suburban coal mine as an example, the Fisher mine floor water inrush source discriminant model is established. The aquifers with the threat of water inrush in the second level coal seam of suburban coal mine are the coal-measure sandstone aquifer and the karst fractured aquifer of the Taiyuan Formation in the floor. Considering the importance of hydrochemical ions and the validity of the data, three kinds of water quality analysis data of sandstone water, limestone water and mixed water with water inrush threat in the coal seam floor are used as samples. The content and mineralization of six kinds of ions, Ca2+, Mg2+, Na++K+, HCO3, Cl and SO42−, are selected as the discriminant analysis variables for the identification of mine inrush water sources. Two typical Fisher discriminant functions (the first and the second discriminant functions) are obtained by SPSS software. The central values of the typical discriminant functions in the three water quality groups are calculated. By comparing the distance between the function values of the water samples to be discriminated and the central values of the three water quality groups, it is able to determine which group the samples belong to. The back substitution estimation method is used to test the Fisher mine floor water inrush source discriminant model. The results show that the discriminant accuracy rate of the model is 93.3%, and the discriminant results are highly reliable. The model is used to classify 10 known water samples in the second level of suburban coal mine. The results show that the discriminant effect of 10 water samples is consistent with the actual situation, and the discriminant accuracy rate is 100%.
  • [1]
    刘伟,刘晨君. 改革开放四十年来煤炭行业安全发展之路[J]. 煤炭经济研究,2018,38(11):34-42.

    LIU Wei,LIU Chenjun. The road to safe development of the coal industry in the past 40 years of reform and opening up[J]. Coal Economic Research,2018,38(11):34-42.
    [2]
    MA Dan,DUAN Hongyu,CAI Xin,et al. A global optimization-based method for the prediction of water inrush hazard from mining floor[J]. Water,2018,10(11):1618. DOI: 10.3390/w10111618
    [3]
    WANG Jing,LI Shucai,LI Liping,et al. Attribute recognition model for risk assessment of water inrush[J]. Bulletin of Engineering Geology & the Environment,2019,78(2):1057-1071.
    [4]
    彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331-2345.

    PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331-2345.
    [5]
    汪洋,左文喆,王斌海,等. 矿井突水水源判别方法研究进展[J]. 现代矿业,2018,34(1):69-73. DOI: 10.3969/j.issn.1674-6082.2018.01.012

    WANG Yang,ZUO Wenzhe,WANG Binhai,et al. Study progress of discriminanat method of the sources of mine water inrush[J]. Modern Mining,2018,34(1):69-73. DOI: 10.3969/j.issn.1674-6082.2018.01.012
    [6]
    李燕,徐志敏,刘勇. 矿井突水水源判别方法概述[J]. 煤炭技术,2010,29(11):87-89.

    LI Yan,XU Zhimin,LIU Yong. Summary on methods of distinguishing sources of mine water-invasion[J]. Coal Technology,2010,29(11):87-89.
    [7]
    穆文平. 北阳庄矿煤层底板断层突水机理与岩溶水疏降水量预测[D]. 北京: 中国矿业大学(北京), 2018.

    MU Wenping. Mechanism of water inrush on faults of coal seam floor and prediction of dewatering rate from karst aquifers in Beiyangzhuang Mine[D]. Beijing: China University of Mining and Technology(Beijing), 2018.
    [8]
    孙林华,桂和荣,陈松. 深层地下水稀土元素无机形态及其对稀土特征的影响−以皖北任楼矿煤系含水层为例[J]. 煤田地质与勘探,2011,39(3):38-43. DOI: 10.3969/j.issn.1001-1986.2011.03.008

    SUN Linhua,GUI Herong,CHEN Song. Inorganic speciation of deep groundwater and its effect on the characteristics of rare earth elements:with aquifers in coal bearing masrues in Renlou Coal Mine in the north of Anhui province as example[J]. Coal Geology & Exploation,2011,39(3):38-43. DOI: 10.3969/j.issn.1001-1986.2011.03.008
    [9]
    乔元栋,孟召平,张村,等. 复杂构造井田含水层特征及其水力联系辨识[J]. 煤炭学报,2021,46(12):4010-4020.

    QIAO Yuandong,MENG Zhaoping,ZHANG Cun,et al. Characteristics of mine aquifer with complex structure and identification of its hydraulic connection[J]. Journal of China Coal Society,2021,46(12):4010-4020.
    [10]
    曾一凡, 梅傲霜, 武强, 等. 基于水化学场机器学习分析与水动力场反向示踪模拟耦合的矿井涌(突)水水源综合判识技术[J/OL]. 煤炭学报: 1-14[2022-03-22]. DOI: 10.13225/j.cnki.jccs.2021.1979.

    ZENG Yifan, MEI Aoshuang, WU Qiang, et al. Source discrimination of mine water inflow or inrush using a hydrochemical field machine learing analysis and hydrodynamic field reverse tracer simulation coupling technique[J/OL]. Journal of China Coal Society: 1-14[2022-03-22]. DOI: 10.13225/j.cnki.jccs.2021.1979.
    [11]
    翟明娟. 距离判别分析及其评价[J]. 长治学院学报,2012,29(2):34-36,55. DOI: 10.3969/j.issn.1673-2014.2012.02.011

    ZHAI Mingjuan. Distance discretion analysis and evaluation[J]. Journal of Changzhi University,2012,29(2):34-36,55. DOI: 10.3969/j.issn.1673-2014.2012.02.011
    [12]
    徐星,李喆,曾珠. 煤层底板突水危险性AHP−Fisher判别分析模型[J]. 煤炭技术,2018,37(7):153-155.

    XU Xing,LI Zhe,ZENG Zhu. AHP-Fisher discrimination model of water inrush risk from coal seam floor[J]. Coal Technology,2018,37(7):153-155.
    [13]
    黄利文. 基于变量择优的Fisher逐步判别分析方法[J]. 系统科学与数学,2021,41(8):2338-2348.

    HUANG Liwen. Fisher stepwise discriminant analysis method based on selecting optimal variables[J]. Journal of Systems Science and Mathematical Sciences,2021,41(8):2338-2348.
    [14]
    温廷新,于凤娥. 基于KPCA−Fisher判别分析的煤炭自燃预测研究[J]. 矿业安全与环保,2018,45(2):49-53,58. DOI: 10.3969/j.issn.1008-4495.2018.02.011

    WEN Tingxin,YU Feng'e. Research on prediction of coal spontaneous combustion based on KPCA-Fisher discriminant analysis[J]. Mining Safety & Environmental Protection,2018,45(2):49-53,58. DOI: 10.3969/j.issn.1008-4495.2018.02.011
  • Related Articles

    [1]SUN Jiping, GONG Dali. Research and formulation of standards for intelligent recognition system of "Three Violations" among coal mine workers[J]. Journal of Mine Automation, 2025, 51(8): 1-6. DOI: 10.13272/j.issn.1671-251x.18252
    [2]MAO Qinghua, SU Yinan, HE Gaofeng, ZHAI Jiao, WANG Rongquan, SHANG Xinmang. Intelligent recognition of personnel intrusion into belt conveyor hazardous areas based on an improved YOLOv8 model[J]. Journal of Mine Automation, 2025, 51(1): 11-20, 103. DOI: 10.13272/j.issn.1671-251x.2024110002
    [3]ZHANG Liya, HAO Bonan, MA Zheng, YANG Zhifang. Research and application of mining AI video edge computing technology[J]. Journal of Mine Automation, 2024, 50(12): 85-92. DOI: 10.13272/j.issn.1671-251x.18215
    [4]MA Tian, JIANG Mei, YANG Jiayi, ZHANG Jiehui, DING Xuhan. Recognition of violations in belt conveyor area based on multi-feature fusion for time-difference network[J]. Journal of Mine Automation, 2024, 50(7): 115-122. DOI: 10.13272/j.issn.1671-251x.2023080108
    [5]MA Hongwei, LI Lang, XUE Xusheng, WANG Chuanwei, WANG Saisai, ZHAO Yingjie, ZHOU Wenjian, ZHANG Heng. Research on hydraulic control system for shield type temporary support robot driving under pressure[J]. Journal of Mine Automation, 2024, 50(7): 21-31. DOI: 10.13272/j.issn.1671-251x.2024030001
    [6]BAO Xinping, WANG Tao. A safety management system for coal mine inclined shaft rail transportation based on intelligent AI visual recognition[J]. Journal of Mine Automation, 2023, 49(S1): 72-75.
    [7]HAN Gang, XIE Jiahao, QIN Xiwen, WANG Xing, HAO Xiaoqi. Intelligent assessment method for rockburst hazard areas based on image recognition technology[J]. Journal of Mine Automation, 2023, 49(12): 77-86, 93. DOI: 10.13272/j.issn.1671-251x.2023010047
    [8]HU Jincheng, ZHANG Libin, JIANG Ze, YAO Chaoxiu, JIANG Zhilong, WANG Zhengyi. Remote supervision and management method for coal mine gas extraction drilling site based on AI video analysis[J]. Journal of Mine Automation, 2023, 49(11): 167-172. DOI: 10.13272/j.issn.1671-251x.2023080031
    [9]MAO Qinghua, GUO Wenjin, ZHAI Jiao, WANG Rongquan, SHANG Xinmang, LI Shikun, XUE Xusheng. Research on video AI recognition technology for abnormal state of coal mine belt conveyors[J]. Journal of Mine Automation, 2023, 49(9): 36-46. DOI: 10.13272/j.issn.1671-251x.18134
    [10]ZHANG Hua, LI Jingfeng, WEI Honglei, LIU Zhen. Research and application of intelligent coal mine safety management based on intelligent video recognition technology[J]. Journal of Mine Automation, 2021, 47(S1): 10-13.
  • Cited by

    Periodical cited type(8)

    1. 罗川, 杨筱彧, 刘晏驰, 游磊. 煤矿人工智能视频监控系统应用研究. 现代信息科技. 2025(13)
    2. 苌延辉,张海峰,黄春. 煤矿AI视频分析系统设计与应用. 煤矿机械. 2025(02): 200-203 .
    3. 苏国用,胡坤,王鹏彧,赵东洋,张辉. 面向煤矿综掘工作面复杂环境的视觉感知系统. 浙江大学学报(工学版). 2025(05): 995-1006+1030 .
    4. 边璟洋,李杰,王杰栋,钱荣荣,徐佳阳. 露天矿山基础数字化的技术研究与工程实践. 矿业研究与开发. 2025(05): 207-213 .
    5. 崔琰,孙一轩. 基于视频AI识别的智能变电站检测系统设计与实现. 家电维修. 2024(11): 110-112 .
    6. 钟加勇,项波,刘丁豪,魏学备. 基于视频AI识别的智能变电站机器人自动化巡视方法. 自动化与仪表. 2024(11): 51-54 .
    7. 马长青,李峰,黄昱博,毛俊杰,李旭阳,魏祥宇,马肖杨. 基于模糊PID的自移式临时支架自适应控制研究. 工矿自动化. 2024(12): 76-84 . 本站查看
    8. 崔玉祥,李兵,孟健,李其海. 基于AI视频技术的煤矿智能化监测与数据分析应用探讨. 内蒙古煤炭经济. 2024(24): 130-132 .

    Other cited types(3)

Catalog

    ZHANG Jinling

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (267) PDF downloads (35) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return