LIU Xianwei, ZHANG Yandong, SHAN Chengfang, et al. Study on optimization and evaluation of continuous mining scheme in coal seam group[J]. Journal of Mine Automation,2022,48(3):32-39, 54. DOI: 10.13272/j.issn.1671-251x.2021110015
Citation: LIU Xianwei, ZHANG Yandong, SHAN Chengfang, et al. Study on optimization and evaluation of continuous mining scheme in coal seam group[J]. Journal of Mine Automation,2022,48(3):32-39, 54. DOI: 10.13272/j.issn.1671-251x.2021110015

Study on optimization and evaluation of continuous mining scheme in coal seam group

More Information
  • Received Date: November 04, 2021
  • Revised Date: March 08, 2022
  • Available Online: March 15, 2022
  • In order to optimize the continuous mining scheme of coal seam group in Yushuling Coal Mine, FLAC3D simulation is used to study the coal seam integrity and working face stress distribution law under two continuous mining schemes of downward mining and upward mining of coal seam group, and the economic benefits of the two schemes are compared. The results show that the coal seam suffers plastic damage to a certain extent during upward mining, but the damage scope of the coal seam plastic zone can be effectively reduced by arranging the transportation roadway and return air roadway of the lower No.7 and No.8 coal seams and the transportation roadway and return air roadway of the lower No.10 coal seam in an inboard way of 10 m. The undamaged areas of the lower No.7 and No.8 coal seams account for 87.5% and 60.4% respectively, and the integrity of the coal seam meets the requirements of safe mining. Compared with the downward mining, the average stress of the lower No.7 and No.8 coal seams during upward mining is reduced by 45.3% and 34.9% respectively, and the maximum supporting stress of the lower No.7 and No.8 coal seams is reduced by 66.7% and 36.4% respectively, and the economic benefit increase by 64.9%. Therefore, the upward mining is preferred as the continuous mining scheme of coal seam group in Yushuling Coal Mine. The optimization result of continuous mining scheme of coal seam group is theoretically verified by using analytic hierarchy process and fuzzy mathematics theory. By establishing the comprehensive evaluation index model of the coal seam group continuous mining scheme, constructing the judgment matrix of the criterion layer relative to the target layer and the index layer and carrying out the consistency test, the evaluation index weight vector is obtained. The membership degree matrix of each factor of the index layer relative to the downward mining and upward mining is constructed by using the linear function method and the binary comparison and ranking method, and the comprehensive membership degree index matrix is obtained. According to the evaluation index weight vector and the comprehensive membership index matrix, the comprehensive evaluation weights of the downward mining and upward mining schemes are obtained as 0.170 87 and 0.704 42 respectively, which verifies the feasibility of upward mining as the optimal scheme for the continuous mining of the coal seam group in this mine.
  • [1]
    顾大钊,张勇,曹志国. 我国煤炭开采水资源保护利用技术研究进展[J]. 煤炭科学技术,2016,44(1):1-7.

    GU Dazhao,ZHANG Yong,CAO Zhiguo. Technical progress of water resource protection and utilization by coal mining in China[J]. Coal Science and Technology,2016,44(1):1-7.
    [2]
    高峰,王文才,李建伟,等. 浅埋煤层群开采复合采空区煤自燃预测[J]. 煤炭学报,2020,45(增刊1):336-345.

    GAO Feng,WANG Wencai,LI Jianwei,et al. Prediction of coal spontaneous combustion in compound gob of shallow seam group mining[J]. Journal of China Coal Society,2020,45(S1):336-345.
    [3]
    彭高友,高明忠,吕有厂,等. 深部近距离煤层群采动力学行为探索[J]. 煤炭学报,2019,44(7):1971-1980.

    PENG Gaoyou,GAO Mingzhong,LYU Youchang,et al. Investigation on mining mechanics behavior of deep close distance seam group[J]. Journal of China Coal Society,2019,44(7):1971-1980.
    [4]
    程志恒,齐庆新,李宏艳,等. 近距离煤层群叠加开采采动应力−裂隙动态演化特征实验研究[J]. 煤炭学报,2016,41(2):367-375.

    CHENG Zhiheng,QI Qingxin,LI Hongyan,et al. Evolution of the superimposed mining induced stress-fissure field under extracting of close distance coal seam group[J]. Journal of China Coal Society,2016,41(2):367-375.
    [5]
    洛锋,曹树刚,李国栋,等. 近距离下行逐层开采底板应变时空差异特征[J]. 采矿与安全工程学报,2018,35(5):997-1004.

    LUO Feng,CAO Shugang,LI Guodong,et al. Temporal-spatial variation characteristics of strain in coal seam floor during downward and layer-by-layer mining in ultra-distance coal seams[J]. Journal of Mining & Safety Engineering,2018,35(5):997-1004.
    [6]
    马振乾,姜耀东,杨英明,等. 芦岭矿近距离煤层重复开采下底板巷道稳定性研究[J]. 岩石力学与工程学报,2015,34(增刊1):3320-3327.

    MA Zhenqian,JIANG Yaodong,YANG Yingming,et al. Floor roadway stability in repeated mining of close distance coal seams in Luling Coal Mine[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(S1):3320-3327.
    [7]
    马立强,汪理全,张东升,等. 近距离煤层群上行开采可行性研究与工程应用[J]. 湖南科技大学学报(自然科学版),2007(4):1-5.

    MA Liqiang,WANG Liquan,ZHANG Dongsheng,et al. Application and study on feasibility of near distance coal seam group ascending mining[J]. Journal of Hunan University of Science & Technology(Natural Science Edition),2007(4):1-5.
    [8]
    马立强,汪理全,乔京利,等. 平四矿近距煤层上行开采研究[J]. 采矿与安全工程学报,2008,25(3):357-360. DOI: 10.3969/j.issn.1673-3363.2008.03.023

    MA Liqiang,WANG Liquan,QIAO Jingli,et al. Study of ascending mining of short-range-seams in Pingdingshan No. 4 Coal Mine[J]. Journal of Mining & Safety Engineering,2008,25(3):357-360. DOI: 10.3969/j.issn.1673-3363.2008.03.023
    [9]
    韩军,张宏伟,张普田,等. 开滦矿区近距离煤层群上行开采可行性研究[J]. 煤炭科学技术,2011,39(10):14-17.

    HAN Jun,ZHANG Hongwei,ZHANG Putian,et al. Feasibility study on upward mining in seam group with short distance to each other in Kailuan Mining Area[J]. Coal Science and Technology,2011,39(10):14-17.
    [10]
    李杨,雷明星,郑庆学,等. 近距离“薄−中−厚”交错分布煤层群上行协调开采定量判别研究[J]. 煤炭学报,2019,44(增刊2):410-418.

    LI Yang,LEI Mingxing,ZHENG Qingxue,et al. Quantitative criterion on coordinated ascending mining in close multiple "thin-medium-thick" coal seams[J]. Journal of China Coal Society,2019,44(S2):410-418.
    [11]
    王寅,付兴玉,孔令海,等. 近距离煤层群上行式开采悬空结构稳定性研究[J]. 煤炭科学技术,2020,48(12):95-100.

    WANG Yin,FU Xingyu,KONG Linghai,et al. Study on stability of dangling structure in ascending mining contiguous coal seams[J]. Coal Science and Technology,2020,48(12):95-100.
    [12]
    靳红梅,党琪,李洪安,等. 基于FCE−AHP的矿井通风质量动态评价[J]. 工矿自动化,2021,47(9):77-84.

    JIN Hongmei,DANG Qi,LI Hong'an,et al. Dynamic evaluation of mine ventilation quality based on FCE-AHP[J]. Industry and Mine Automation,2021,47(9):77-84.
    [13]
    张小东,张硕,孙庆宇,等. 基于AHP和模糊数学评价地质构造对煤层气产能的影响[J]. 煤炭学报,2017,42(9):2385-2392.

    ZHANG Xiaodong,ZHANG Shuo,SUN Qingyu,et al. Evaluating the influence of geological structure to CBM productivity based on AHP and fuzzy mathematics[J]. Journal of China Coal Society,2017,42(9):2385-2392.
    [14]
    孟祥瑞,徐铖辉,高召宁,等. 采场底板应力分布及破坏机理[J]. 煤炭学报,2010,35(11):1832-1836.

    MENG Xiangrui,XU Chenghui,GAO Zhaoning,et al. Stress distribution and damage mechanism of mining floor[J]. Journal of China Coal Society,2010,35(11):1832-1836.
    [15]
    王连国,韩猛,王占盛,等. 采场底板应力分布与破坏规律研究[J]. 采矿与安全工程学报,2013,30(3):317-322.

    WANG Lianguo,HAN Meng,WANG Zhansheng,et al. Stress distribution and damage law of mining floor[J]. Journal of Mining & Safety Engineering,2013,30(3):317-322.
    [16]
    任子晖,陈泽彭,吴新忠,等. 矿井通风系统健康评价研究[J]. 工矿自动化,2021,47(9):70-76.

    REN Zihui,CHEN Zepeng,WU Xinzhong,et al. Research on health evaluation of mine ventilation system[J]. Industry and Mine Automation,2021,47(9):70-76.
    [17]
    李少辉. 新城金矿难采矿体采矿方法研究[D]. 沈阳: 东北大学, 2011.

    LI Shaohui. Study on mining method of difficult mining body in Xincheng Gold Mine[D]. Shenyang: Northeastern University, 2011.
  • Related Articles

    [1]TANG Lijun, WU Wei, LIU Shisen. Application of improved analytic hierarchy process in the emergency treatment mechanism of precise personnel positioning system[J]. Journal of Mine Automation, 2021, 47(10): 110-114. DOI: 10.13272/j.issn.1671-251x.2021030050
    [2]DU Dawen, WANG Baomin, ZHANG Ji. Application of fuzzy comprehensive evaluation method in coal mine "six systems"[J]. Journal of Mine Automation, 2014, 40(4): 42-45. DOI: 10.13272/j.issn.1671-251x.2014.04.010
    [3]FANG Gang, DI Ming, LIU Han-yong, DANG Chun-cai, LAN Wei. Early warning system for coal mine safety production based on fuzzy-analytical hierarchy process[J]. Journal of Mine Automation, 2013, 39(11): 98-102. DOI: 10.7526/j.issn.1671-251X.2013.11.026
    [4]TIAN Shui-cheng, WANG Xi, LIU Zhen-guo, SHEN Qing-tao. Research of Coal Spontaneous Combustion Accident Based on Hierarchy Importance Causal Analysis Method[J]. Journal of Mine Automation, 2012, 38(3): 14-16.
    [5]WANG Zhuo-ling, LI Xiao-ying. Research of Mathematical Model of Photovoltaic Array Based on Matlab[J]. Journal of Mine Automation, 2011, 37(12): 40-43.
    [6]QIAN Xu, LIU Feng. Method of WIA-PA Health Evaluation Based on FAHP[J]. Journal of Mine Automation, 2011, 37(10): 63-66.
    [7]ZOU Yi-huai, JIANG Cheng-yu, LI Chun-hui, SU Heng-yu. Evaluation of Coal Mine Safety Production Based on AHP and Fuzzy Mathematics[J]. Journal of Mine Automation, 2010, 36(10): 39-41.
    [8]YUAN Mei, ZHANG Yi-ping, WANG Zuo-qiang. Safety Standardization Evaluation System of Tailing Reservoir Based on Analytical Hierarchy Process[J]. Journal of Mine Automation, 2010, 36(1): 52-55.
    [9]WANG Yu-mei, ZHAO Tie-ying. Research of Voltage State and Tendency Forewarning in Coal Mine Power Network Based on Fuzzy Theory and Analysis Hierarchy Process[J]. Journal of Mine Automation, 2009, 35(8): 1-5.
    [10]WANG Yan, ZHANG Fu-en. Study on Improving Steady-state Accuracy of Fuzzy Controller with Mathematical Method[J]. Journal of Mine Automation, 2001, 27(1): 9-10.
  • Cited by

    Periodical cited type(16)

    1. 张浪,刘彦青. 矿井智能通风与关键技术研究. 煤炭科学技术. 2024(01): 178-195 .
    2. 黄俊杰,杨应迪,黄建达. 矿井巷道火灾烟流流动规律及有效控制方案研究. 煤炭科技. 2024(01): 117-122+127 .
    3. 董翠翠. 基于LabVIEW的煤矿通风智能控制系统. 佳木斯大学学报(自然科学版). 2024(07): 77-80 .
    4. 李瑞文. 矿井通风机运行稳定性监测体系的应用研究. 西部探矿工程. 2024(12): 113-115 .
    5. 贾进章,尚文天,雷涛,李欣垚. 矿井智能通风发展趋势. 辽宁工程技术大学学报(自然科学版). 2024(05): 545-555 .
    6. 裴晓东,郝海清,王凯,蒋曙光,孙勇,陈佳辉,吴征艳,蒋合国,邵昊. 矿井复杂风网火灾风烟流应急调控技术及应用. 煤炭科学技术. 2023(05): 124-132 .
    7. 陈小建. 矿井通风机运行稳定性监测系统的应用分析. 机械管理开发. 2023(11): 208-209+212 .
    8. 郭玉柱. 斜沟煤矿火灾应急隔离系统设计研究. 煤. 2022(02): 13-16+29 .
    9. 苏君,吴昊,周琰. 变电站环境风机联动系统远程智能控制方法. 工业仪表与自动化装置. 2022(01): 20-24+51 .
    10. 杨旭,张浪,马强,刘彦青,张宏杰,赵凯凯,李伟,段思恭,耿锋. 多个采煤工作面风量按需动态联动调控系统. 工矿自动化. 2022(06): 112-117 . 本站查看
    11. 郝海清,蒋曙光,王凯,吴征艳,裴晓东,邵昊. 基于Ventsim的矿井运输巷火灾风烟流应急调控技术. 煤矿安全. 2022(09): 38-46 .
    12. 吴新忠,张芝超,许嘉琳,王凯. 矿井智能风量调节研究. 工矿自动化. 2021(04): 44-50 . 本站查看
    13. 郝海清,王凯,张春玉,蒋曙光,王海宽. 矿井皮带巷火灾风烟流场-区-网演化与调控规律. 中国矿业大学学报. 2021(04): 716-724 .
    14. 王凯,蔡炜垚,高士伟,陈新宇,张雨晨. 矿井火灾风烟流应急调控系统联动可靠性研究. 中国矿业大学学报. 2021(04): 744-754 .
    15. 李义宝. 基于实时监控系统的煤矿智能通风系统的研究. 山东煤炭科技. 2021(07): 211-213 .
    16. 程晓之,王凯,郝海清,陈瑞鼎,吴建宾. 矿井局部通风智能调控系统及关键技术研究. 工矿自动化. 2021(09): 18-24 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (233) PDF downloads (17) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return