Citation: | YAO Huawei, HE Xiaodong, WANG Zhe. Numerical study of pulverized coal ignition under different oxygen conditions based on solid-gas coupling[J]. Journal of Mine Automation,2022,48(3):107-111, 117. DOI: 10.13272/j.issn.1671-251x.2021090068 |
[1] |
马砺,李超华,武瑞龙,等. 最低点火温度条件下煤粉自燃特性试验研究[J]. 煤炭科学技术,2020,48(2):110-117.
MA Li,LI Chaohua,WU Ruilong,et al. Experimental study on spontaneous combustion characteristics of pulverized coal under minimum ignition temperature[J]. Coal Science and Technology,2020,48(2):110-117.
|
[2] |
褚廷湘,李品,余明高. 工作面推进下采空区煤自燃进程的动态模拟研究[J]. 中国矿业大学学报,2019,48(3):529-537.
CHU Tingxiang,LI Pin,YU Minggao. Dynamic simulation of coal spontaneous combustion in gob under working face advancing[J]. Journal of China University of Mining & Technology,2019,48(3):529-537.
|
[3] |
张江石,孙龙浩. 分散度对煤粉爆炸特性的影响[J]. 煤炭学报,2019,44(4):1154-1160.
ZHANG Jiangshi,SUN Longhao. Effect of dispersity on explosion characteristics of coal dust[J]. Journal of China Coal Society,2019,44(4):1154-1160.
|
[4] |
董子文,吴宪,齐庆杰,等. 风障联合压实防治煤堆自燃技术工艺参数优化[J]. 中国安全生产科学技术,2016,12(3):15-20.
DONG Ziwen,WU Xian,QI Qingjie,et al. Parameter optimization on prevention and control technology for spontaneous combustion of coal stockpile by combined method of compaction and wind barrier[J]. Journal of Safety Science and Technology,2016,12(3):15-20.
|
[5] |
PARK H,RANGWALA A S,DEMBSEY N A. A means to estimate thermal and kinetic parameters of coal dust layer from hot surface ignition tests[J]. Journal of Hazardous Materials,2009,168:145-155. DOI: 10.1016/j.jhazmat.2009.02.010
|
[6] |
于志金,文虎,陈晓坤,等. 大型煤自燃试验的火源演化特征模拟[J]. 煤炭科学技术,2017,45(1):89-93.
YU Zhijin,WEN Hu,CHEN Xiaokun,et al. Simulation on ignition source evolution features of large scale coal spontaneous combustion experiment[J]. Coal Science and Technology,2017,45(1):89-93.
|
[7] |
齐庆杰,王欢,董子文,等. 基于COMSOL软件分析确定煤堆初始自燃区域[J]. 煤炭科学技术,2016,44(10):18-23.
QI Qingjie,WANG Huan,DONG Ziwen,et al. Determination on initial coal spontaneous combustion area of coal pile based on COMSOL software[J]. Coal Science and Technology,2016,44(10):18-23.
|
[8] |
杨俊义. 氧气体积分数对楔形热板煤自燃特性的影响[J]. 煤炭技术,2021,40(2):107-111.
YANG Junyi. Influence of oxygen volume fraction on coal spontaneous combustion on wedge hot plate[J]. Coal Technology,2021,40(2):107-111.
|
[9] |
WU Dejian,VANIERSCHOT M,VERPLAETSEN F,et al. Numerical study on the ignition behavior of coal dust layers in air and O2/CO2 atmospheres[J]. Applied Thermal Engineering,2016,109:709-717. DOI: 10.1016/j.applthermaleng.2016.08.124
|
[10] |
文虎,王文,程小蛟,等. 不同抽采条件对采空区煤自燃“三带”的影响研究[J]. 矿业安全与环保,2020,47(6):1-7.
WEN Hu,WANG Wen,CHENG Xiaojiao,et al. Study on the effect of different extraction conditions on "three zones" of coal spontaneous combustion in goaf[J]. Mining Safety & Environmental Protection,2020,47(6):1-7.
|
[11] |
刘轶康,牛会永,聂琦苗,等. 高地温矿井采空区煤自燃O2浓度场分布研究[J]. 工矿自动化,2021,47(8):108-114.
LIU Yikang,NIU Huiyong,NIE Qimiao,et al. Study on the distribustion of O2 concentration field of coal spontaneous combustion in high ground temperature goaf[J]. Industry and Mine Automation,2021,47(8):108-114.
|
[12] |
邸帅,王继仁,郝朝瑜,等. 多场耦合作用下瓦斯与煤自燃协同预防数值模拟[J]. 安全与环境学报,2018,18(2):497-503.
DI Shuai,WANG Jiren,HAO Chaoyu,et al. Numerical simulation of synergistic prevention from the gas and coal spontaneous combustion under multifield coupling[J]. Journal of Safety and Environment,2018,18(2):497-503.
|
[13] |
刘宝,穆坤,叶飞,等. 基于相关向量机的煤自燃预测方法[J]. 工矿自动化,2020,46(9):104-108.
LIU Bao,MU Kun,YE Fei,et al. Prediction method of coal spontaneous combustion based on relevance vector machine[J]. Industry and Mine Automation,2020,46(9):104-108.
|
[14] |
邢震. 浅埋厚煤层地表漏风对采空区煤自燃影响数值模拟研究[J]. 工矿自动化,2021,47(2):80-87.
XING Zhen. Numerical simulation study on the influence of surface air leakage in shallow thick coal seam on coal spontaneous combustion in goaf[J]. Industry and Mine Automation,2021,47(2):80-87.
|
[1] | SONG Tao, WANG Jianwen, WU Fengliang, ZHANG Guoqun, CHEN Fei, FENG Xiong, LI Longqing. Real-time calculation method of mine ventilation network based on ultrasonic full-section wind measurement[J]. Journal of Mine Automation, 2022, 48(4): 114-120, 141. DOI: 10.13272/j.issn.1671-251x.2021090073 |
[2] | MA Jian, LI Zefang, ZHANG Desheng. Design of pipeline flow meter based on ultrasonic time difference method[J]. Journal of Mine Automation, 2021, 47(2): 93-97. DOI: 10.13272/j.issn.1671-251x.2021010022 |
[3] | LIU Guanhua, YANG Chen, LIU Haoxiong. An experimental research on ultrasonic parameters of coal[J]. Journal of Mine Automation, 2018, 44(1): 68-73. DOI: 10.13272/j.issn.1671-251x.2018.01.003 |
[4] | LIU Lili. Design of mine-used ultrasonic transducer of wind speed and directio[J]. Journal of Mine Automation, 2014, 40(9): 103-106. DOI: 10.13272/j.issn.1671-251x.2014.09.024 |
[5] | LU Gui-rong, NI Peng-hao, CHEN Shu-yue. Design of ultrasonic liquid level sensor for sealed container[J]. Journal of Mine Automation, 2013, 39(9): 23-27. DOI: 10.7526/j.issn.1671-251X.2013.09.007 |
[6] | MI Lan, JI Mei, MENG Lin-shan, GU Lin-zhu. Design of Portable Ultrasonic Ranger Based on MSP430F149[J]. Journal of Mine Automation, 2011, 37(6): 122-124. |
[7] | XU Le-nian, LIU Wei-guang, WANG Quan. Design of Mine-used Ultrasonic Open-channel Flowmeter[J]. Journal of Mine Automation, 2011, 37(4): 22-27. |
[8] | LIAO Hua-li, ZHOU Ju. Study in Ultrasonic Generator in Power Ultrasonic Fabricatio[J]. Journal of Mine Automation, 1999, 25(6): 11-12. |
[9] | LIU Dong, JIANG Yong-gua. Ultrasonic Detector for Wall Rock Crack and Its Applicatio[J]. Journal of Mine Automation, 1997, 23(1): 50-52. |
[10] | JIANG Yu-hua. Model KGF1 Mine Use Ultrasonic Air Velocity and Volume Sensor[J]. Journal of Mine Automation, 1996, 22(2): 31-33. |