ZHANG Yufei, MA Hongwei, MAO Qinghua, HUA Hongtao, SHI Jinlong. Coal mine mobile robot positioning method based on fusion of vision and inertial navigatio[J]. Journal of Mine Automation, 2021, 47(3): 46-52. DOI: 10.13272/j.issn.1671-251x.2020110049
Citation: ZHANG Yufei, MA Hongwei, MAO Qinghua, HUA Hongtao, SHI Jinlong. Coal mine mobile robot positioning method based on fusion of vision and inertial navigatio[J]. Journal of Mine Automation, 2021, 47(3): 46-52. DOI: 10.13272/j.issn.1671-251x.2020110049

Coal mine mobile robot positioning method based on fusion of vision and inertial navigatio

More Information
  • The existing mobile robot monocular vision positioning algorithm performs poorly in illumination changing and weak illumination areas, and cannot be applied to dark scenes in coal mines. In order to solve these problems, the oriented FAST and rotated BRIEF (ORB) algorithm is improved by non-maximal value suppression processing and adaptive threshold adjustment. The random sample consensus (RANSAC) algorithm is used for feature point matching, which improves the efficiency of feature point extraction and matching in weak illumination areas of coal mines. In order to solve the problem that the distance between the robot and the object and the size of the object cannot be determined by monocular vision positioning alone, the epipolar geometry method is used to visually calculate the matched feature points, and the inertial navigation data is used to provide scale information for monocular visual positioning. Based on the tight coupling principle, the graph optimization method is applied to fuse, optimize and solve the inertial navigation data and monocular visual data so as to obtain the robot pose information. The experimental results show that: ① Although the number of feature points extracted is small, the ORB algorithm takes less time. The feature points, which are evenly distributed, can accurately describe the object features. ② Compared with the original ORB algorithm, the improved ORB algorithm has a certain increase in extraction time. However, the number of available feature points extracted is also greatly increased. ③ The RANSAC algorithm eliminates the mismatched points and improves the accuracy of feature point matching, thus improving the accuracy of monocular vision positioning. ④ The accuracy of the improved fusion positioning method is greatly improved, the relative error is reduced from 0.6 m to less than 0.4 m, the average error is reduced from 0.20 m to 0.15 m, and the root mean square error is reduced from 0.24 m to 0.18 m.
  • Related Articles

    [1]SHANGGUAN Xingchi, ZHANG Xiaoliang, LIU Chao, SHI Hui, WANG Jiayu. Research on equipment fault diagnosis based on improved feature extraction algorithm and capsule network[J]. Journal of Mine Automation, 2024, 50(S1): 146-150.
    [2]LU Guoju, SHI Wenfang. Dynamic route planning for emergency escape in coal mines using a Dijkstra-ACO hybrid algorithm[J]. Journal of Mine Automation, 2024, 50(10): 147-151, 178. DOI: 10.13272/j.issn.1671-251x.2024020050
    [3]WANG Junfu, XUE Xiaojie, YANG Yi. Laser point cloud segmentation algorithm for hydraulic support based on neighborhood feature encoding and optimization[J]. Journal of Mine Automation, 2024, 50(7): 98-106, 178. DOI: 10.13272/j.issn.1671-251x.2024040052
    [4]ZHU Daixian, QIU Qiang, KONG Haoran, HU Qisheng, LIU Shulin. A line feature matching algorithm for mine images based on line segment detection and LT descriptors[J]. Journal of Mine Automation, 2024, 50(2): 72-82. DOI: 10.13272/j.issn.1671-251x.2023090045
    [5]ZHAO Duan, SHEN Chengyang, SHI Xinguo, LIU Ke. Two-dimensional dynamic matching algorithm for mobile edge computing in intelligent mine[J]. Journal of Mine Automation, 2022, 48(4): 89-95. DOI: 10.13272/j.issn.1671-251x.17782
    [6]GONG Yun, YANG Pangbin, JIE Xinyu. Underground image matching algorithm combining homomorphic filtering and histogram equalizatio[J]. Journal of Mine Automation, 2021, 47(10): 37-41. DOI: 10.13272/j.issn.1671-251x.2021070018
    [7]GUAN Zenglun, GU Jun, ZHAO Guangyuan. Underground video stitching algorithm based on improved speeded up robust features[J]. Journal of Mine Automation, 2018, 44(11): 69-74. DOI: 10.13272/j.issn.1671—251x.17342
    [8]ZHANG Ping, ZHOU Qiong, SUN Qian. Research on spectrum sensing algorithm of coal mine based on Strackelberg game theory[J]. Journal of Mine Automation, 2016, 42(8): 25-28. DOI: 10.13272/j.issn.1671-251x.2016.08.007
    [9]JIANG Daihong, HUA Gang, WANG Yongxing. Research of automatic and quick stitching algorithm of mine monitoring image[J]. Journal of Mine Automation, 2015, 41(4): 78-82. DOI: 10.13272/j.issn.1671-251x.2015.04.020
    [10]ZHOU Xin, MIAO Chang-yun, LI Yan-feng, WU Zhi-gang. Optimization of CS-ACELP Voice Code Algorithm and Its Implementation on DSP[J]. Journal of Mine Automation, 2009, 35(12): 69-72.
  • Cited by

    Periodical cited type(11)

    1. 王忠宾,司垒,魏东,戴剑博,顾进恒,邹筱瑜,张聪,闫海峰,谭超. 煤矿防冲钻孔机器人全自主钻进系统关键技术. 煤炭学报. 2024(02): 1240-1258 .
    2. 孙逍远,薄煜明. 基于多视觉传感器的矿井移动机器人目标定位模型研究. 金属矿山. 2024(11): 199-204 .
    3. 马宏伟,苏浩,薛旭升,李超,郭逸风,王星,周文剑,崔闻达,喻祖坤,成佳帅. 煤矿井下移动机器人激光标靶定位方法研究. 煤炭科学技术. 2024(11): 60-73 .
    4. 巩师鑫,赵国瑞,王飞. 机器视觉感知理论与技术在煤炭工业领域应用进展综述. 工矿自动化. 2023(05): 7-21 . 本站查看
    5. 李尧,桂方俊. 基于EfficientNet和LSTM的井下设备定位技术. 信息记录材料. 2023(05): 121-123+126 .
    6. 王忠宾,司垒,王浩,张修峰,赵世豪,魏东,谭超,闫海峰. 基于空间阵列式惯性单元的防冲钻孔机器人位姿解算方法. 煤炭学报. 2022(01): 598-610 .
    7. 司垒,王忠宾,王浩,魏东,谭超. 基于惯性传感组件和BP神经网络的防冲钻孔机器人钻具姿态解算. 仪器仪表学报. 2022(04): 213-223 .
    8. 常波峰,郭奋超,刘欣,石超,赵国辉,范国涛. 采煤机与液压支架相对位置精确检测技术研究. 煤矿机械. 2022(10): 39-41 .
    9. 马宏伟,晁勇,薛旭升,毛清华,王川伟. 基于双目视觉的掘锚机器人行驶位移检测方法. 工矿自动化. 2022(12): 16-25 . 本站查看
    10. 李慧. 副井井口自动化运输系统研究. 工矿自动化. 2021(06): 124-127+132 . 本站查看
    11. 赵海发. 基于视觉的煤块自动搬运系统设计. 煤炭技术. 2021(11): 205-207 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (165) PDF downloads (30) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return