GAO Hong, YANG Hongwei. Research on combined gas extraction technology of high andbottom extraction lane in high gas mine[J]. Journal of Mine Automation, 2021, 47(1): 100-106. DOI: 10.13272/j.issn.1671-251x.2020060054
Citation: GAO Hong, YANG Hongwei. Research on combined gas extraction technology of high andbottom extraction lane in high gas mine[J]. Journal of Mine Automation, 2021, 47(1): 100-106. DOI: 10.13272/j.issn.1671-251x.2020060054

Research on combined gas extraction technology of high andbottom extraction lane in high gas mine

More Information
  • In order to solve the problems of low extraction efficiency, low extraction concentration, poor permeability of coal seam and difficulty in drilling holes in the gas management of U-ventilated return working face of loose and low-permeability coal seams, the combined gas extraction technology of high and bottom roadway in high gas mine is proposed. The research object of this paper is 1307 fully mechanized mining face of Zhaozhuang Mine of Shanxi Jin Coal Group. The technology consists of a high extraction lane, a central bottom extraction lane and a side bottom extraction lane on the basis of the original U-shaped ventilation. The side bottom extraction lane covers the drilling of two heading faces, the central bottom extraction lane penetrates the strip of the seam area to pre-pump the gas of the coal seam, and the high extraction lane extracts the gas from the upper corner. This study proposes the position of the side bottom extraction lane and the central bottom extraction lane, and proposes the drilling arrangement and the reasonable layer arrangement of the high extraction lane. The practical application results show that the maximum gas volume fraction of the coal working face covered by the side bottom extraction lane is 0.48%, and the extraction through the layer drilling reduces the gas emission from the heading face effectively. After the central bottom extraction lane extracting the gas from this coal seam, the gas content decreases by 4.18 m3/t on average. As the negative pressure of the high extraction lane is 12-15 kPa, the pure extraction volume is stable at about 46.13 m3, which reduces the gas emission to the working face.
  • Related Articles

    [1]JIANG Mingquan, KANG Xiangtao, YAN Chaoxing, TANG Meng, WANG Ziyi. Study on effective extraction radius of bedding borehole under the impact of normal fault[J]. Journal of Mine Automation, 2022, 48(2): 55-60. DOI: 10.13272/j.issn.1671-251x.2021070015
    [2]KONG Weiyi, ZHAO Heping, LIU Quanlin, ZHOU Xin. Spray sealing technology for gas extraction drilling[J]. Journal of Mine Automation, 2021, 47(12): 19-24. DOI: 10.13272/j.issn.1671-251x.2021050022
    [3]YIN Pengcheng, TIAN Zhaojun, LU Yi, ZHANG Shengyuan, OU Yanping, SUN Kai, YANG Yihan. Study on the effect of gravity heat pipe arrangement onhigh temperature point of coal pile[J]. Journal of Mine Automation, 2021, 47(9): 96-100.. DOI: 10.13272/j.issn.1671-251x.17813
    [4]LIU Qingbao, CHEN Long, GONG Xuanping, YU Rui, CHENG Xiaoyu, DING Jianxun. Study on gas extraction from parabolic high level drilling during the initial mining period of fully mechanized caving face[J]. Journal of Mine Automation, 2021, 47(7): 106-114. DOI: 10.13272/j.issn.1671-251x.17699
    [5]LI Bingrui, WANG Wei, CHEN Fengmei, LIU Na. Optimal arrangement of wind speed sensor based on directed path matrix method[J]. Journal of Mine Automation, 2021, 47(5): 52-57. DOI: 10.13272/j.issn.1671-251x.2020110066
    [6]MENG Xiangjun, CHEN Gonghua, RUAN Guoqiang, ZHANG Binbin, GUO Ying. Practice of gas drainage by high-level directional borehole in Qinglong Coal Mine[J]. Journal of Mine Automation, 2019, 45(12): 91-96. DOI: 10.13272/j.issn.1671-251x.2019060073
    [7]SONG Hongli, ZHAO Yang, LI Qingzhao. Gas seepage law and drainage borehole layout considering coal body creep[J]. Journal of Mine Automation, 2019, 45(11): 42-48. DOI: 10.13272/j.issn.1671-251x.2019060037
    [8]ZHANG Bo, XIE Xionggang, XU Shiqing. Numerical simulation on gas drainage and borehole arrangement parameters of bedding borehole in a coal mine[J]. Journal of Mine Automation, 2018, 44(11): 49-56. DOI: 10.13272/j.issn.1671—251x.2018040049
    [9]ZHU Yuanzhong, LI Weixiang, MA Fengzhen, ZHANG Xiangyang, TIAN Zijian. Characteristic analysis of different periodic arrangement ways of low-frequency metamaterial structure[J]. Journal of Mine Automation, 2015, 41(10): 27-31. DOI: 10.13272/j.issn.1671-251x.2015.10.008
    [10]LI Zhi~, ZHANG Yong-sheng~, FAN Pei-lei~. Discussion on Installation Mode of Methane Sensor in Cutting Face with Special Arrangement of Coal Mine Underground[J]. Journal of Mine Automation, 2009, 35(9): 113-115.
  • Cited by

    Periodical cited type(13)

    1. 王腾飞. 矿井低瓦斯含量煤层工作面采场矿山压力变化与瓦斯涌出关系研究. 山西化工. 2025(06)
    2. 郭武奎. 底抽巷围岩破坏特征及支护优化研究. 能源技术与管理. 2025(01): 69-73 .
    3. 左明明. 综采工作面采空区多层位立体式瓦斯抽采技术. 陕西煤炭. 2024(03): 25-28+67 .
    4. 董相欢. 底板承压水上底抽巷破坏特征及控制技术. 陕西煤炭. 2024(06): 70-76 .
    5. 段东东. 底板承压水上底抽巷布置层位及围岩控制技术研究. 山东煤炭科技. 2024(07): 114-119 .
    6. 赖刘晶,张翠兰,张尚斌. 底板穿层孔预抽煤巷条带瓦斯技术优化. 现代矿业. 2023(02): 88-91 .
    7. 左明明. 坚硬顶板综采工作面采空区三维立体式瓦斯治理技术研究. 煤. 2023(04): 10-13+60 .
    8. 郭建行. 近距离高瓦斯煤层群首采层“一面四巷”瓦斯治理技术. 煤炭工程. 2023(05): 70-75 .
    9. 孙伟. 深部高应力底抽巷围岩破坏特征及控制技术研究. 山西冶金. 2023(06): 220-224 .
    10. 莫海峰. 缺水传感器改进设计. 煤矿机械. 2022(02): 117-119 .
    11. 陈海栋,王兆丰,尉瑞,孙永鑫,马兴莹. 基于钻屑量法的煤巷松动圈范围研究. 煤炭技术. 2022(02): 90-92 .
    12. 胡华,汪圣伟,李希建,王文利,杨泽俊. 多煤层穿层钻孔瓦斯抽采比例计算方法研究及应用. 煤矿现代化. 2022(06): 96-98+103 .
    13. 王学兵,苏保山. 厚煤层大采高工作面瓦斯综合治理技术研究. 山东煤炭科技. 2021(11): 101-104 .

    Other cited types(3)

Catalog

    YANG Hongwei

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (137) PDF downloads (18) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return