GAO Rui, HAO Le, LIU Bao, WEN Jingyi, CHEN Yuhang. Research on underground drill pipe counting method based on improved ResNet network[J]. Journal of Mine Automation, 2020, 46(10): 32-37.. DOI: 10.13272/j.issn.1671-251x.2020040054
Citation: GAO Rui, HAO Le, LIU Bao, WEN Jingyi, CHEN Yuhang. Research on underground drill pipe counting method based on improved ResNet network[J]. Journal of Mine Automation, 2020, 46(10): 32-37.. DOI: 10.13272/j.issn.1671-251x.2020040054

Research on underground drill pipe counting method based on improved ResNet network

More Information
  • In view of problems that the existing underground drill pipe quantity statistics method has low accuracy and is easily affected by environmental changes,an underground drill pipe counting method based on improved ResNet network was proposed combining with convolutional neural network, signal filtering and other technologies. According to the difference between unloading action and non-unloading action in video image, the sample set is classified and trained based on the ResNet-50 network model to determine whether each frame of the video contains the unloading action; linear learning rate preheating and Logistic-based learning rate attenuation strategy are combined to update learning rate and improve the accuracy of model classification; the video classification confidence is filtered through the integration method, and the number of falling edges of the confidence curve is counted to realize drill pipe counting. Experimental results show that the preheating + attenuation learning rate update strategy can effectively improve classification accuracy of the image classification model to 89%. The actual application results show that underground drill pipe counting method based on improved ResNet network can efficiently identify unloaded rod images in the video with an average accuracy of 97%, which meets the actual application requirements.
  • Related Articles

    [1]LI Yingna, CUI Yanping, AN Boshuo, LIU Baijian, JIN Jianwei. Research on the roadheader cutting control system based on convolutional neural network and fuzzy PID[J]. Journal of Mine Automation, 2025, 51(1): 61-70, 137. DOI: 10.13272/j.issn.1671-251x.2024070084
    [2]SHI Zhiyuan, TENG Hu, MA Chi. Fault diagnosis of planetary gearbox based on multi-information fusion and convolutional neural network[J]. Journal of Mine Automation, 2022, 48(9): 56-62. DOI: 10.13272/j.issn.1671-251x.2022060011
    [3]YAN Honglin. Coal and gangue image classification model based on improved feedback neural network[J]. Journal of Mine Automation, 2022, 48(8): 50-55, 113. DOI: 10.13272/j.issn.1671-251x.2022050026
    [4]WANG Anyi, ZHOU Xiaoming. Mine roadway field strength prediction based on improved convolutional neural network[J]. Journal of Mine Automation, 2021, 47(10): 49-53. DOI: 10.13272/j.issn.1671-251x.2021030073
    [5]HUANG Chongqia. Fault identification of rolling bearing based on multi hidden layers wavelet convolution extreme learning neural network[J]. Journal of Mine Automation, 2021, 47(5): 77-82. DOI: 10.13272/j.issn.1671-251x.2020110036
    [6]RAO Zhongyu, WU Jingtao, LI Ming. Coal-gangue image classification method[J]. Journal of Mine Automation, 2020, 46(3): 69-73. DOI: 10.13272/j.issn.1671-251x.17495
    [7]TANG Shiyu, ZHU Aichun, ZHANG Sai, CAO Qingfeng, CUI Ran, HUA Gang. Target detection of underground personnel based on deep convolutional neural network[J]. Journal of Mine Automation, 2018, 44(11): 32-36. DOI: 10.13272/j.issn.1671—251x.2018050068
    [8]DU Yun, ZHANG Lulu, PAN Tao. Miners' facial expression recognition method based on convolutional neural network[J]. Journal of Mine Automation, 2018, 44(5): 95-99. DOI: 10.13272/j.issn.1671-251x.17312
    [9]WANG Chong-li. Model XBSG-6/50 Arc Suppression Coil of Automatic Tracking and Compensatio[J]. Journal of Mine Automation, 1995, 21(3): 33-35.
  • Cited by

    Periodical cited type(15)

    1. 张海峰, 罗明华, 黄春, 朱兴林, 游磊. 煤矿打钻管理系统关键技术研究与应用. 矿业安全与环保. 2025(03)
    2. 郑冉, 张富凯, 袁冠, 张艳梅, 王少璞, 张强, 赵珊, 王登科, 霍占强, 张海燕, 何恒. 基于YOLOv11_OBB的煤矿钻杆计数方法. 工矿自动化. 2025(05) 本站查看
    3. 冉庆庆, 董立红, 温乃宁. 改进YOLOv8的煤矿井下低照度图像钻杆计数方法. 电子测量技术. 2025(11)
    4. 赵伟,张文康,刘德成,王涛,王登科,夏代林,周礼赞,李志飞. 基于YOLOv5的瓦斯抽采钻杆智能计数研究. 河南理工大学学报(自然科学版). 2025(03): 81-88 .
    5. 王向前,史策. 基于DeepSORT和改进YOLOv5的煤矿井下钻杆计数方法. 煤炭技术. 2024(02): 200-204 .
    6. 张增辉,张海峰,朱兴林. 煤矿井下打钻视频管理系统研究与设计. 煤矿机械. 2024(07): 184-186 .
    7. 张幼振,范强,陈龙,陈果,税洋,李旺年. 煤矿井下钻探数字化监测系统. 工矿自动化. 2024(07): 173-178 . 本站查看
    8. 杜京义,党梦珂,乔磊,魏美婷,郝乐. 基于改进时空图卷积神经网络的钻杆计数方法. 工矿自动化. 2023(01): 90-98 . 本站查看
    9. 马军磊,栗伟周,张赞. 基于PP-YOLO的电子焊接实训装置安全报警系统. 许昌学院学报. 2023(02): 116-121 .
    10. 姚超修,胡亚磊. 基于视频识别的煤矿井下钻杆计数算法. 煤炭技术. 2023(08): 203-206 .
    11. 范强,张幼振,陈龙,陈果,杨冬冬. 煤矿井下定向钻探数字化平台技术研究. 煤矿安全. 2023(10): 212-218 .
    12. 张栋,姜媛媛. 基于改进MobileNetV2的钻杆计数方法. 工矿自动化. 2022(10): 69-75 . 本站查看
    13. 张栋,姜媛媛. 融合注意力机制与逆残差结构的轻量级钻机目标检测方法. 电子测量与仪器学报. 2022(11): 201-210 .
    14. 李晨曦,邵蒙悦,冯杰. 基于深度学习的配电网线路设备缺陷智能检测. 浙江电力. 2021(03): 97-103 .
    15. 方杰,李振璧,夏亮. 基于ECO-HC的钻杆计数方法. 煤炭技术. 2021(11): 186-189 .

    Other cited types(12)

Catalog

    CHEN Yuhang

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (166) PDF downloads (25) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return