ZHANG Ning, ZHANG Youzhen, YAO Ke. An optimized identification method of coal-bearing stratum lithology[J]. Journal of Mine Automation, 2020, 46(7): 100-106. DOI: 10.13272/j.issn.1671-251x.2020010037
Citation: ZHANG Ning, ZHANG Youzhen, YAO Ke. An optimized identification method of coal-bearing stratum lithology[J]. Journal of Mine Automation, 2020, 46(7): 100-106. DOI: 10.13272/j.issn.1671-251x.2020010037

An optimized identification method of coal-bearing stratum lithology

More Information
  • In view of difficulties in obtaining stratum information parameters and low accuracy of lithology identification in existing lithology identification method of coal-bearing stratum in coal mine underground, an optimized identification method of coal-bearing stratum lithology based on principal component analysis (PCA) algorithm and kernel fuzzy C-means clustering (KFCM) algorithm was proposed. A high-dimensional drilling parameters set was constructed by using drilling test rig to obtain six kinds of drilling sensitive parameters, such as penetration rate, rotary torque, drilling pressure, rotational speed, rotary pressure and mud pump flow rate, which was taken as identification data sources, including training samples and test samples. Combining feature extraction advantage of PCA algorithm and good clustering effect of KFCM algorithm, a lithology identification model based on PCA-KFCM algorithm was established. The PCA algorithm was used to extract features of the training samples and reduce the dimension of the data to obtain eigenvalues and eigenvectors of the training samples. KFCM algorithm was used to conduct fuzzy core clustering on principal component data sets of training samples, and the test rock samples were divided into several types. The criterion was established by the Mahalanobis distance method, and the formation lithology of the test samples was identified by the minimum Mahalanobis distance. The test results show that the optimized identification method of coal-bearing stratum lithology based on PCA-KFCM algorithm can effectively identify formation lithology, and the identification accuracy is improved by 23.2% compared with the conventional KFCM algorithm.
  • Related Articles

    [1]HAN Gang, XIE Jiahao, QIN Xiwen, WANG Xing, HAO Xiaoqi. Intelligent assessment method for rockburst hazard areas based on image recognition technology[J]. Journal of Mine Automation, 2023, 49(12): 77-86, 93. DOI: 10.13272/j.issn.1671-251x.2023010047
    [2]YU Haixu, DU Zhiyong, WEI Zhidan, BAO Weiwei, TENG Chunyang, XUE Guoqing, HAI Sufeng. Analysis on the current situation and development trend of unmanned driving technology in mining areas in China[J]. Journal of Mine Automation, 2022, 48(S2): 82-87.
    [3]CAO Yuchao. Mine flood perception based on gray level co-occurrence matrix and regression analysis[J]. Journal of Mine Automation, 2020, 46(9): 94-97. DOI: 10.13272/j.issn.1671-251x.17678
    [4]SUN Jiping, JIN Chunhai. Research on methods of mine flood perception and water source determination[J]. Journal of Mine Automation, 2019, 45(4): 1-5. DOI: 10.13272/j.issn.1671-251x.17416
    [5]SUN Jiping, SUN Yanyu. Research on methods of mine fire monitoring and trend predictio[J]. Journal of Mine Automation, 2019, 45(3): 1-4. DOI: 10.13272/j.issn.1671-251x.17407
    [6]ZHU Yongping, XU Xiaojian. Development trend of mine frequency converter[J]. Journal of Mine Automation, 2017, 43(10): 18-23. DOI: 10.13272/j.issn.1671-251x.2017.10.004
    [7]WANG Jiangrong, LUO Ziqin, ZHAO Rui. Application of projection pursuit in gas emission predictio[J]. Journal of Mine Automation, 2015, 41(4): 87-90. DOI: 10.13272/j.issn.1671-251x.2015.04.022
    [8]WU Zhaofa, WU Xiang, QIAN Jiansheng. Trend prediction of gas concentration based on interpolation trapezoidal fuzzy information granulatio[J]. Journal of Mine Automation, 2014, 40(12): 31-36. DOI: 10.13272/j.issn.1671-251x.2014.12.009
    [9]REN Zhi-ling~, YU Qun~, YU Chao~. Application of CLGA in Impulsion Pressure Predictio[J]. Journal of Mine Automation, 2010, 36(3): 41-45.
    [10]REN Zhi-ling~, YU Qun~, YU Chao~, HAN Wei-qin~. Application of CLGA in Impulsion Pressure Predictio[J]. Journal of Mine Automation, 2010, 36(3): 39-41.
  • Cited by

    Periodical cited type(16)

    1. 承达瑜, 刘国全, 刘鹏, 孟磊, 武择鹏, 母明哲. 一种双向矿井突水蔓延算法及应用. 煤炭与化工. 2025(08)
    2. 孙继平, 龚大立. 煤矿瓦斯抽采和探水作业智能管理系统标准研究制定. 工矿自动化. 2025(06) 本站查看
    3. 连会青,康佳,尹尚先,徐斌,闫国成,夏向学,徐保同. 煤矿井下顶板突水征兆视频智能识别方法研究. 煤矿安全. 2025(04): 166-173 .
    4. 刘艳冬,刘滢,卢兰萍,白峰青,王铁记,卫皓皓. 基于ZOA-CNN-GRU模型的煤层底板突水等级预测. 中国煤炭. 2024(06): 44-51 .
    5. 原超. 煤矿井下可视化智能监控系统. 机械制造. 2024(11): 98-100+59 .
    6. 孙继平,程继杰. 煤矿冲击地压和煤与瓦斯突出感知报警方法研究. 工矿自动化. 2022(01): 1-6 . 本站查看
    7. 张立亚. 基于5G通信的矿山可视化智能监控技术. 煤炭技术. 2022(01): 191-194 .
    8. 孙继平,范伟强. MS-ADoG域结合ReNLU与VGG-16的矿井双波段图像融合算法. 光子学报. 2022(03): 1-15 .
    9. 刘春霞,高强,潘理虎,龚大立. 融合交叉熵损失的3DCNN探水作业动作识别. 计算机工程与设计. 2022(04): 1160-1165 .
    10. 张立亚. 基于图像识别的煤矿井下安全管控技术. 煤矿安全. 2021(02): 165-168 .
    11. 孙继平,余星辰. 基于声音识别的煤矿重特大事故报警方法研究. 工矿自动化. 2021(02): 1-5+44 . 本站查看
    12. 周国慧,储婷婷. 采煤机视频监控系统设计. 电子元器件与信息技术. 2021(04): 27-28 .
    13. 党伟超,张泽杰,白尚旺,龚大力,吴喆峰. 基于改进双流法的井下配电室巡检行为识别. 工矿自动化. 2020(04): 75-80 . 本站查看
    14. 曹玉超. 基于灰度共生矩阵与回归分析的矿井水灾感知. 工矿自动化. 2020(09): 94-97 . 本站查看
    15. 黄骁骏. 基于图像处理的滑块验证码模拟验证研究. 电子技术. 2020(05): 16-19 .
    16. 曹玉超. 基于Gabor域时空泛化建模的矿井水灾感知方法. 工矿自动化. 2020(10): 76-79+86 . 本站查看

    Other cited types(7)

Catalog

    YAO Ke

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (95) PDF downloads (15) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return