DU Jingyi, HAO Le, WANG Yueyang, YANG Ruonan, WEN Jingyi. A detection method for large blocks in underground coal transportation[J]. Journal of Mine Automation, 2020, 46(5): 63-68. DOI: 10.13272/j.issn.1671-251x.2019090067
Citation: DU Jingyi, HAO Le, WANG Yueyang, YANG Ruonan, WEN Jingyi. A detection method for large blocks in underground coal transportation[J]. Journal of Mine Automation, 2020, 46(5): 63-68. DOI: 10.13272/j.issn.1671-251x.2019090067

A detection method for large blocks in underground coal transportation

More Information
  • In view of problems that the existing detection methods for large blocks in underground coal transportation cannot detect quantity of large blocks and detection accuracy is not high, a detection method for large blocks in underground coal transportation based on improved HED neural network and Canny operator was proposed. Firstly, extracted reflection component combined with edge reservation filtering method is used to preprocess collected image, so as to enhance the image brightness and contrast and deepen image edge information. Then, the preprocessed image is substituted into the fusion model of improved HED neural network and Canny operator to obtain the continuous large blocks edge image, and the binarization filled image is obtained by doing non-operation according to the edge image. The large blocks in the binarization image are marked with rectangle and the pixel number and area of the large blocks are calculated. Finally, the number of large blocks is counted and judge whether the area of large blocks is higher than the set threshold. If the area is higher than the set threshold, the alarm will be given.The experimental results show that the detection method for large blocks in underground coal transportation based on improved HED neural network with Canny operator has a good edge detection effect, which can effectively reduce the image edge detection error, and count the number of large blocks, calculate the area of large blocks.
  • Related Articles

    [1]WANG Kai, ZENG Xiangjin, LI Xin, ZHANG Rui, XU Cheng. Research on conveyor belt deviation detection method[J]. Journal of Mine Automation, 2023, 49(3): 23-30, 52. DOI: 10.13272/j.issn.1671-251x.2022050064
    [2]LIU Haipeng, ZHOU Shuqiu. Application analysis of multi-access edge computing in intelligent mine network[J]. Journal of Mine Automation, 2022, 48(3): 26-31. DOI: 10.13272/j.issn.1671-251x.2021100004
    [3]LIU Xiaoyang, LIU Jing, ZHANG Xiangyang, SHEN Lifei, DENG Zhigang, MA Xinyan, WANG Di. Two-dimensional Gabor filter-based  belt tear detection[J]. Journal of Mine Automation, 2021, 47(4): 103-107. DOI: 10.13272/j.issn.1671-251x.2020110045
    [4]ZHANG Zhiqiang, FENG Wei, ZHAO Xiaohu, YOU Xingyi. Edge computing-oriented scraper detection method for coal preparation plants[J]. Journal of Mine Automation, 2021, 47(4): 92-97. DOI: 10.13272/j.issn.1671-251x.2020100001
    [5]LI Xianguo, ZHANG Can, ZHANG Lei, SHEN Lifang, JIANG Hangqi. Calculation method of joint elongation of steel cord conveyor belt[J]. Journal of Mine Automation, 2018, 44(4): 8-13. DOI: 10.13272/j.issn.1627-251x.2017110052
    [6]YANG Bo, ZHU Xuran, SUN Yanjing, LU Nannan, CHEN Yan, WU Tianqi. Video cooperated intelligent identification weighbridge management system for coal mine[J]. Journal of Mine Automation, 2018, 44(1): 35-39. DOI: 10.13272/j.issn.1671-251x.17303
    [7]HUANG Shao-jie. Research of coal-rock interface identification based on gray threshold method[J]. Journal of Mine Automation, 2013, 39(5): 52-54.
    [8]ZHAO Qian, WANG Yi-ting, ZENG Zhao-hua, HOU Yuan-bin, ZHAO Su. An edge detection algorithm for mine roadway image[J]. Journal of Mine Automation, 2013, 39(2): 71-75.
    [9]LI Mao-dong, LIANG Yong-zhi, JIA Wen-pei, XIA Lu-yi. Application of BP neural network method based on genetic optimization in methane detectio[J]. Journal of Mine Automation, 2013, 39(2): 51-53.
    [10]MA Yan, ZHANG Zhi-hui. Comparison of Some Operators of Edge Detectio[J]. Journal of Mine Automation, 2004, 30(1): 54-56.
  • Cited by

    Periodical cited type(9)

    1. 梁旭, 张慧峰, 高凯. 融合改进YOLOv7-tiny与ByteTrack跟踪的胶带运输机速度测量方法. 矿业研究与开发. 2025(08)
    2. 秦宇龙,程继明,任一个,王晓晴,赵青,安翠娟. 基于改进YOLOv5的带式输送机大块煤检测. 工矿自动化. 2024(02): 57-62+71 . 本站查看
    3. 张克亮. 基于MT-CNN的矿井带式输送机输煤量检测技术. 中国矿业. 2024(06): 137-142 .
    4. 王伟,李擎,张德政,栗辉,王昊. 基于深度学习的矿石图像处理研究综述. 工程科学学报. 2023(04): 621-631 .
    5. 朱延涛. 基于视频比对算法的溜槽堵塞检测方案研究及应用. 煤炭加工与综合利用. 2023(02): 29-31 .
    6. 王渊,郭卫,张传伟,贺海涛,赵栓峰,路正雄. 融合注意力机制和先验知识的刮板输送机异常煤块检测. 西安科技大学学报. 2023(01): 192-200 .
    7. 高凯,董立红,邓凡. 基于递归门控卷积和上下文注意力的煤块检测算法. 矿业研究与开发. 2023(06): 183-190 .
    8. 张旭辉,闫建星,张超,万继成,王利欣,胡成军,王力,王东. 基于改进YOLOv5s+DeepSORT的煤块行为异常识别. 工矿自动化. 2022(06): 77-86+117 . 本站查看
    9. 王昱栋,代伟,马小平. 基于机器视觉的锚杆异常快速检测方法. 工矿自动化. 2021(04): 13-18 . 本站查看

    Other cited types(3)

Catalog

    WEN Jingyi

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (128) PDF downloads (22) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return