XU Qingqing, ZHAO Haifang, LI Shouju. A fault diagnosis method for coal mine machinery bearing[J]. Journal of Mine Automation, 2019, 45(10): 80-86. DOI: 10.13272/j.issn.1671-251x.2019020005
Citation: XU Qingqing, ZHAO Haifang, LI Shouju. A fault diagnosis method for coal mine machinery bearing[J]. Journal of Mine Automation, 2019, 45(10): 80-86. DOI: 10.13272/j.issn.1671-251x.2019020005

A fault diagnosis method for coal mine machinery bearing

More Information
  • Aiming at the problem that existing adaptive diagnosis methods of coal mine machinery bearing fault were susceptible to the interference of high frequency noise and intermittent noise, which led to the low accuracy of original signal decomposition and feature extraction, a fault diagnosis method for coal mine machinery bearing was proposed which was based on modified local mean decomposition(MLMD). The method adopts adjuvant noise decomposition method in self-adaptive decomposition part of local mean decomposition(LMD) method, namely adding Gaussian white noise to original signal firstly and then carrying out LMD, so as to restrain influence of high-frequency and intermittent noise on signal decomposition. In feature parameter extraction part, MLMD method does Hilbert transformation for product function components, then extracts feature parameters, so as to realize feature parameter extraction in whole value range. The simulation and test results show that MLMD method has good effect on decomposition and feature parameter extraction of bearing fault signal and high diagnosis accuracy of inner and outer ring fault of bearing.
  • Related Articles

    [1]TAO Long, GUO Yanfei. Feature extraction of coal mine ventilator vibration signals based on improved variational mode decomposition[J]. Journal of Mine Automation, 2025, 51(2): 131-137. DOI: 10.13272/j.issn.1671-251x.2024120015
    [2]MA Changqing, LI Feng, HUANG Yubo, MAO Junjie, LI Xuyang, WEI Xiangyu, MA Xiaoyang. Research on adaptive control of self-moving temporary support based on fuzzy PID[J]. Journal of Mine Automation, 2024, 50(12): 76-84. DOI: 10.13272/j.issn.1671-251x.2024070064
    [3]JU Chen, ZHANG Chao, FAN Hongwei, ZHANG Xuhui, YANG Yiqing, YAN Yang. Rolling bearing fault diagnosis based on wavelet packet decomposition and PSO-BPN[J]. Journal of Mine Automation, 2020, 46(8): 70-74. DOI: 10.13272/j.issn.1671-251x.2019120022
    [4]TIAN Zhen, JING Shuangxi, ZHAO Lijuan, GAO Shan. Research on noise and vibration characteristics of shearer[J]. Journal of Mine Automation, 2019, 45(3): 23-28. DOI: 10.13272/j.issn.1671-251x.2018090032
    [5]ZHANG Linfeng, TIAN Muqin, SONG Jiancheng, HE Ying, FENG Junling, YANG Xiang. Feature extraction of vibration signal of roadheader based on singular value decompositio[J]. Journal of Mine Automation, 2019, 45(1): 28-34. DOI: 10.13272/j.issn.1671-251x.2018070035
    [6]CHENG Jie, LI Siran. Bearing fault diagnosis based on recurrence plots and local non-negative matrix factorizatio[J]. Journal of Mine Automation, 2017, 43(7): 81-85. DOI: 10.13272/j.issn.1671-251x.2017.07.017
    [7]HUANG Yu, ZHANG Yingjun, PAN Lihu. Otherness feature extraction method for underground image based on Shearlet transform[J]. Journal of Mine Automation, 2016, 42(3): 64-68. DOI: 10.13272/j.issn.1671-251x.2016.03.015
    [8]WANG Hongtao, ZHENG Naiqing, LIU Huijun. A new method of narrowband interference suppression of partial discharge signal based on resonance sparse decompositio[J]. Journal of Mine Automation, 2015, 41(5): 68-73. DOI: 10.13272/j.issn.1671-251x.2015.05.017
    [9]ZHANG Xiao-guang, XU Zhao, WANG Gang, LIU Wei-dong. Application of Self-adaptive Filter Based on DSP in Mine Communicatio[J]. Journal of Mine Automation, 2007, 33(2): 36-38.
    [10]JIA Zong-pu, LIU Qun-po, JIA Xiang-zhi, WANG Fu-zhong. Application of On-line Fuzzy and Self-adaptive PID in Temperature Control of Diamond Synthesizing[J]. Journal of Mine Automation, 2004, 30(2): 32-34.
  • Cited by

    Periodical cited type(12)

    1. 武杰,卢振连,马洪儒,朱艳芳,吴耀春,薛晓峰,姜阔胜. 基于谐波匹配补偿和无键相阶次跟踪的轴承故障诊断. 工矿自动化. 2023(02): 125-133+140 . 本站查看
    2. 任增斌,胡乃法,刘永刚,李照,张瑞杰. 煤矿机械齿轮和轴承故障诊断研究. 现代制造技术与装备. 2023(05): 191-193 .
    3. 张捷,王华,孙顺红. 基于改进层次基本熵融合SMA-SVM模型的轴承故障诊断方法. 机电工程. 2023(07): 1047-1053+1129 .
    4. 姜家国,郭曼利. 基于MTF和DenseNet的滚动轴承故障诊断方法. 工矿自动化. 2022(09): 63-68 . 本站查看
    5. 鲁泽明,王秀莉. 基于数字孪生技术的矿用设备预测性维护方案研究. 数字通信世界. 2022(12): 21-23 .
    6. 宋国栋. 煤矿排水泵故障诊断与预防性管理方法研究. 自动化与仪表. 2021(06): 105-108 .
    7. 姜家国,郭曼利,杨思国. 基于GAF和DenseNet的滚动轴承故障诊断方法. 工矿自动化. 2021(08): 84-89 . 本站查看
    8. 李玉吉,曹旭辉,王江宏,赵欣. 基于机器学习算法的煤矿汽车机械设备故障诊断模型. 能源与环保. 2021(10): 241-245 .
    9. 张猛,苗长云,孟德军. 轴承早期故障特征提取方法研究. 工矿自动化. 2020(04): 85-90+116 . 本站查看
    10. 鞠晨,张超,樊红卫,张旭辉,杨一晴,严杨. 基于小波包分解和PSO-BPNN的滚动轴承故障诊断. 工矿自动化. 2020(08): 70-74 . 本站查看
    11. 周李兵. 煤矿机电设备预测性维护用采集计算平台设计. 工矿自动化. 2020(08): 106-111 . 本站查看
    12. 常彦鹏. 煤矿冲击式破碎机传动装置故障及改进研究. 内蒙古石油化工. 2020(11): 13-14 .

    Other cited types(4)

Catalog

    LI Shouju

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (86) PDF downloads (19) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return