WANG Cuixia, LIU Wei, LIU Jiku. Research on pore structure characteristics of gas coal in Fukang mining area[J]. Journal of Mine Automation, 2019, 45(7): 92-96. DOI: 10.13272/j.issn.1671-251x.2019010062
Citation: WANG Cuixia, LIU Wei, LIU Jiku. Research on pore structure characteristics of gas coal in Fukang mining area[J]. Journal of Mine Automation, 2019, 45(7): 92-96. DOI: 10.13272/j.issn.1671-251x.2019010062

Research on pore structure characteristics of gas coal in Fukang mining area

More Information
  • In order to study gas storage and extraction feasibility in Fukang mining area, mercury intrusion method and liquid nitrogen adsorption method in low temperature were used to compare and analyze pore structure parameters and distribution characteristics of coal under different conditions.The analysis results show that large pores and micropores in coal samples account for a large proportion, the pores with large pore diameter are composed of cylindrical pores with open ends and parallel plate holes with four open sides, which has good openness and is beneficial to gas drainage and utilization;The total pore volume of gas coal samples is larger than that of high metamorphism coal samples, pore structure is conducive to the occurrence and release of gas; The specific surface area of gas coal pores is smaller than that of high metamorphic coal samples, but the specific surface area of small pores account for a large proportion in the pore structure, and small holes can provide large space for gas adsorption, so the gas coal in Fukang mining area also has certain gas adsorption capacity, coal seam gas can be extracted and utilized.
  • Related Articles

    [1]YANG Jidong, TONG Yanjun. Efficient gas extraction technology via surface wells in goaf areas of deep outburst-prone coal mines[J]. Journal of Mine Automation, 2025, 51(6): 15-20. DOI: 10.13272/j.issn.1671-251x.2024120032
    [2]LIU Jikun, REN Bang, WANG Cuixia. Study on coal full pore aperture distribution characteristics considering coal matrix compression effect[J]. Journal of Mine Automation, 2022, 48(2): 125-130. DOI: 10.13272/j.issn.1671-251x.2021060077
    [3]YU Hao, CHEN Bingqian, KANG Jianrong, MEI Han. Research on surface deformation law of closed mines based on SBAS-InSAR[J]. Journal of Mine Automation, 2021, 47(2): 45-51. DOI: 10.13272/j.issn.1671-251x.2020110044
    [4]SHI Xiaoyu, ZHANG Yanhai, YANG Keming, YAO Shuyi, WANG Jian. Applicability of two grey models in earth-surface subsidence prediction of mining area[J]. Journal of Mine Automation, 2020, 46(5): 28-33. DOI: 10.13272/j.issn.1671-251x.2019090088
    [5]CHEN Shun, ZHENG Nanshan, QI Yun, BAN Meng. Application research on Offset Tracking technology in monitoring oflarge surface deformation in coal mine subsidence area[J]. Journal of Mine Automation, 2017, 43(6): 32-37. DOI: 10.13272/j.issn.1671-251x.2017.06.008
    [6]LIU Ya-jing, LI Mei. Algorithm research of ore body 3D model with integration of surface-volume elements and its implementatio[J]. Journal of Mine Automation, 2013, 39(9): 63-67. DOI: 10.7526/j.issn.1671-251X.2013.09.017
    [7]YAN Jian-wei, WANG Yun-jia, ZHU Yong. Monitoring of Surface Subsidence Based on D-InSAR Technology in Huainan Mining Area[J]. Journal of Mine Automation, 2011, 37(8): 48-51.
    [8]ZHOU Xin, MIAO Chang-yun, LI Yan-feng, WU Zhi-gang. Optimization of CS-ACELP Voice Code Algorithm and Its Implementation on DSP[J]. Journal of Mine Automation, 2009, 35(12): 69-72.
    [9]XIE Ai-ling~(, 2), WU Kan~(, 2). Application Research of R2V and Desktop ArcInfo in Land Reclamation Planning of Mining Area[J]. Journal of Mine Automation, 2009, 35(8): 100-103.
    [10]LI Hua-xin, WU Yong-xiang, CAO Zhen-gua. Design of Wireless Monitoring System for Surface Airshaft of Coal Mine Based on DSP[J]. Journal of Mine Automation, 2007, 33(6): 49-51.
  • Cited by

    Periodical cited type(20)

    1. 李长达, 高奔, 岳亚军, 张涛. 矿用全断面掘进机故障诊断专家系统的设计与实现. 煤矿机电. 2025(03)
    2. 付翔,王开,王然风. 智能采矿数智赋能技术内涵与应用范式. 工矿自动化. 2025(03): 1-8 . 本站查看
    3. 陈晓云,窦波,王鹤森,刘静. 基于强关联规则与关键词的AI问数机器人训练算法. 机械设计与制造工程. 2025(04): 99-103 .
    4. 付翔,闫明. 煤炭开采技术的人工智能应用. 绿色矿山. 2025(01): 63-72 .
    5. 常琳,李宗伟. 煤矿工业视频监控系统通用技术条件标准研究制定. 工矿自动化. 2025(05): 155-162 . 本站查看
    6. 周长春,温智平,周脉强,徐舸. 基于数据生命周期的煤泥浮选智能控制技术研究进展. 洁净煤技术. 2024(01): 45-57 .
    7. 文秀龙. 煤矿智能化掘进及集控系统的进展研究和面临的难题. 模具制造. 2024(03): 176-178 .
    8. 符思捷,宛瑞莹,岳心怡,熊先青. 新一代人工智能技术赋能家居智能制造研究与应用. 世界林业研究. 2024(01): 90-96 .
    9. 仝鹏,郁鹞,赵莉,何珍. 智能化井工煤矿技术开发科技成果价值评估方法研究. 煤炭经济研究. 2024(04): 20-26 .
    10. 寇文营,徐勤成. 煤矿安全监控系统的现状与发展. 内蒙古煤炭经济. 2024(07): 82-84 .
    11. 常立新,廉永彪,廉永海. 论人工智能背景下地质资料服务模式转型. 自然资源信息化. 2024(02): 23-28 .
    12. 贾一帆,付翔,王然风,张智星,孙岩. 基于数据驱动的液压支架初撑后承压效果即时预测技术. 工矿自动化. 2024(07): 32-39 . 本站查看
    13. 梅晓虎,吕小强,雷萌. 基于Stair-YOLOv7-tiny的煤矿井下输送带异物检测. 工矿自动化. 2024(08): 99-104+111 . 本站查看
    14. 褚新胜,盛高永,张海云. 基于博弈论的煤矿生产系统智能化GRA-KL-TOPSIS评价模型. 矿业研究与开发. 2024(09): 194-203 .
    15. 贺皓宇,王进东,李景宏,付翔. 煤矿综采工作面设备群自动启停程序设计与开发. 机电信息. 2024(18): 46-52 .
    16. 高玉洁,王荣博,王丹识. 煤炭行业AI大模型技术应用前景分析与建议. 煤炭经济研究. 2024(08): 109-115 .
    17. 魏文艳. 我国煤矿智能化发展及技术创新. 煤炭经济研究. 2024(08): 102-108 .
    18. 张智星,付翔,张小强,李浩杰,秦一凡,刘萌,孙岩,贾一帆,杨宇琪. 煤矿工业数据AI模型自动推理技术. 工矿自动化. 2024(09): 138-143 . 本站查看
    19. 戴春雷. 我国矿山智能化研究进展及大模型应用前景. 工矿自动化. 2024(S2): 1-11+22 . 本站查看
    20. 张少锋,李佳瑞,曹语涵,汤效平,王兹尧. 西北地区煤矿与新能源融合发展实施路径研究. 煤炭工程. 2023(12): 178-183 .

    Other cited types(8)

Catalog

    LIU Jiku

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (90) PDF downloads (11) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return