SHEN Fenglong, MAN Yongkui, WANG Jianhui, BIAN Chunyuan. Feedback adaptive rate parameters optimization of full-order state observer[J]. Journal of Mine Automation, 2018, 44(10): 65-71. DOI: 10.13272/j.issn.1671-251x.2018040062
Citation: SHEN Fenglong, MAN Yongkui, WANG Jianhui, BIAN Chunyuan. Feedback adaptive rate parameters optimization of full-order state observer[J]. Journal of Mine Automation, 2018, 44(10): 65-71. DOI: 10.13272/j.issn.1671-251x.2018040062

Feedback adaptive rate parameters optimization of full-order state observer

More Information
  • It is difficult to find the optimal solution in existing design of feedback adaptive rate PI parameters of full-order state observer, a feedback adaptive rate PI parameter optimization algorithm of full-order state observer based on improved particle swarm optimization algorithm was proposed. Firstly, according to frequency domain design method, design criterion of the feedback adaptive rate parameters and the main factors affecting parameter design were given. Then several sets of parameter values designed and encoded by the design criterion were mixed into the random initial population to increase the number of fine individuals in the initial population, so as to improve convergence speed and search efficiency. Finally, the optimal value of PI parameters was obtained by coding, initializing population and parameter setting, fitness evaluating and updating particle velocity and location. The experimental results show that the speed estimation accuracy of PI parameters obtained by the optimization algorithm is obviously better than that of the traditional trial method when the slope is given 0.2 pu and 0.6 pu rotational speed, regardless of no-load startup or load operation,and the accuracy can meet requirements of technical indexes of mine-used hoist.
  • Related Articles

    [1]LI Zaiyou, SUN Yanbin, WANG Xiaoguang, CHEN Yong, LIU Guangwei, GUO Zhiqing. Unmanned truck transportation scheduling in open-pit mines based on improved tunicate swarm algorithm[J]. Journal of Mine Automation, 2022, 48(6): 87-94, 127. DOI: 10.13272/j.issn.1671-251x.17929
    [2]HAN Tao, LI Jing, HUANG Yourui, XU Shanyong, XU Jiachang. Research on trajectory planning algorithm of manipulator arm of coal mine rescue robot[J]. Journal of Mine Automation, 2021, 47(11): 45-52. DOI: 10.13272/j.issn.1671-251x.17844
    [3]MEN Fei, JIANG Xi. Improved gray wolf optimization algorithm for solving low-carbon transportation scheduling problem in open-pit mines[J]. Journal of Mine Automation, 2020, 46(12): 90-94. DOI: 10.13272/j.issn.1671-251x.2020070049
    [4]PENG Cheng, SUI Xiaomei, WANG Huiju. Improved differential evolution algorithm for solving open-pit mine transportation problem[J]. Journal of Mine Automation, 2018, 44(4): 104-108. DOI: 10.13272/j.issn.1671-251x.2017100044
    [5]WANG Anyi, XI Xi. Forecasting of underground field intensity based on LS-SVM optimized by genetic algorithm[J]. Journal of Mine Automation, 2016, 42(12): 46-50. DOI: 10.13272/j.issn.1671-251x.2016.12.010
    [6]SONG Pinggang, JIANG Lang, LI Yunfeng, DUAN Chengting. Research of optimized sorting algorithm of capacitor voltage for MMC[J]. Journal of Mine Automation, 2014, 40(6): 64-67. DOI: 10.13272/j.issn.1671-251x.2014.06.016
    [7]LV Ting-ting, MA Xiao-ping, CHEN Li. Simulation of PID control of jig discharging system optimized by genetic algorithm[J]. Journal of Mine Automation, 2013, 39(1): 67-70.
    [8]AN Feng-shua, . Optimization of PID Controller Parameters Based on Modified Particle Swarm Optimization Algorithm[J]. Journal of Mine Automation, 2010, 36(5): 54-57.
    [9]NIE Xing-xin~, LIU Shu-xiang~. Application of Genetic Algorithm in Optimization of Vehicle Dispatching System of Jinduicheng Molybdenum Mine[J]. Journal of Mine Automation, 2008, 34(2): 12-15.
    [10]MA Yan-nan, CHENG Qian-li. A Reactive Power Optimization Planning of Power System Based on Genetic Algorithm[J]. Journal of Mine Automation, 2007, 33(4): 33-35.
  • Cited by

    Periodical cited type(6)

    1. 郑明芽,郑晓东,王薇薇,阙忠灏,陶海豹,彭倩. 基于探索性数据分析的电动矿卡动力电池故障影响因素研究. 煤矿机电. 2025(01): 91-95 .
    2. 刘航,申皓,杨勇,纪陵,余洋. 基于高阶马尔可夫链的纯电重卡集群负荷预测. 中国电力. 2024(05): 61-69 .
    3. 薛棋文,丁震. 基于5G通信的露天矿矿用卡车采掘运输自动化控制方法. 矿业研究与开发. 2024(08): 206-213 .
    4. 邢轩瑞,徐状状. 基于蚁群算法的铝土矿运输网络智能调度. 世界有色金属. 2024(21): 19-21 .
    5. 王爽,梁娜,刘庆军,安绘春. 基于改进鲸鱼算法的汽车材料运输应急调度及平台研究. 粘接. 2023(10): 79-82 .
    6. 刘海锋. 露天煤矿智能化建设关键技术研究. 工矿自动化. 2023(S2): 107-111 . 本站查看

    Other cited types(10)

Catalog

    Article Metrics

    Article views (75) PDF downloads (9) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return