NIU Jianfeng. Research on automatic drawing control system on fully-mechanized coal face with sublevel caving[J]. Journal of Mine Automation, 2018, 44(6): 27-30. DOI: 10.13272/j.issn.1671-251x.2018020020
Citation: NIU Jianfeng. Research on automatic drawing control system on fully-mechanized coal face with sublevel caving[J]. Journal of Mine Automation, 2018, 44(6): 27-30. DOI: 10.13272/j.issn.1671-251x.2018020020

Research on automatic drawing control system on fully-mechanized coal face with sublevel caving

More Information
  • In view of problem of low production efficiency of artificial drawing method on fully-mechanized coal face with sublevel caving, an automatic drawing control system was studied.Sonic sensors, vibrating sensors and ash sensors are installed on hydraulic supports. Through artificial demonstration operation and machine learning to memory sensor signals, sensor signal characteristic waveform during the end of drawing process is determined, and the similarity between collected vibration sensing signal, sound sensing signal and the characteristic signal is compared; the ash sensor is used to effectively identify inclusion rate of caved top coal. According to the similarity and inclusion rate, the system execute early warning or direct control to realize automatic drawing control which taking sensor-based sensing control as main control, time control as protection value, and remote intervention control as auxiliary control. The system improves automation level and production efficiency of fully-mechanized coal face with sublevel caving.
  • Related Articles

    [1]LI Libao, YUAN Yong, QIN Zhenghan, LI Bo, YAN Zhengtian, LI Yong. Research on coal-gangue identification technology driven by multi-source fusion of image features and vibration spectrum[J]. Journal of Mine Automation, 2024, 50(11): 43-51. DOI: 10.13272/j.issn.1671-251x.2024080081
    [2]TENG Wenxiang, WANG Cheng, FEI Shuhui. Research on coal gangue recognition algorithm based on HGTC-YOLOv8n model[J]. Journal of Mine Automation, 2024, 50(5): 52-59. DOI: 10.13272/j.issn.1671-251x.2024030064
    [3]CHENG Gang, PAN Zeye, WEI Yifan, CHEN Jie. Research on coal gangue recognition method based on infrared thermal imaging[J]. Journal of Mine Automation, 2024, 50(4): 69-77. DOI: 10.13272/j.issn.1671-251x.2023100086
    [4]HE Kai, CHENG Gang, WANG Xi, GE Qingnan, ZHANG Hui, ZHAO Dongyang. Research on coal gangue recognition method based on CED-YOLOv5s model[J]. Journal of Mine Automation, 2024, 50(2): 49-56, 82. DOI: 10.13272/j.issn.1671-251x.2023090065
    [5]CHENG Gang, CHEN Jie, PAN Zeye, WEI Yifan, CHEN Sensen. Coal gangue recognition method based on water heat transfer and infrared thermal imaging[J]. Journal of Mine Automation, 2024, 50(1): 66-71, 137. DOI: 10.13272/j.issn.1671-251x.2023050056
    [6]ZHANG Shiru, HUANG Zongliu, ZHANG Yuanhao, ZHANG Ao, JI Liang. Coal and gangue recognition research based on improved YOLOv5[J]. Journal of Mine Automation, 2022, 48(11): 39-44. DOI: 10.13272/j.issn.1671-251x.2022060052
    [7]DING Zhen, CHANG Boshen. Near-infrared reflectance spectrum data preprocessing method for coal gangue identification[J]. Journal of Mine Automation, 2021, 47(12): 93-97. DOI: 10.13272/j.issn.1671-251x.17853
    [8]DOU Xijie, WANG Shibo, LIU Houguang, CHEN Qianyou, ZOU Wencai, LU Zhaodong . Coal and gangue identification method based on EMD feature extraction and random forest[J]. Journal of Mine Automation, 2021, 47(3): 60-65. DOI: 10.13272/j.issn.1671-251x.2020100038
    [9]CAO Guanqiang, YU Rui, MENG Xiangtao, ZHAO Wensheng, LIU Qing. Design of vibration sensor for coal gangue identificatio[J]. Journal of Mine Automation, 2021, 47(1): 118-122. DOI: 10.13272/j.issn.1671-251x.2020070097
    [10]ZHANG Liang, NIU Jianfeng, DAI Gang, ZHAO Wensheng. Design of automatic identification system of coal and gangue for fully-mechanized coal caving working face and its applicatio[J]. Journal of Mine Automation, 2014, 40(9): 121-124. DOI: 10.13272/j.issn.1671-251x.2014.09.029
  • Cited by

    Periodical cited type(12)

    1. 崔良杰. 基于托顶煤厚度的煤层巷道顶板破坏特征的研究. 能源技术与管理. 2025(02): 86-89+123 .
    2. 崔树文. 德顺煤业复合顶板巷道围岩控制技术研究. 晋控科学技术. 2024(01): 49-54 .
    3. 郭玉,王玮,院龙. 锚杆锚固区承载层范围影响因素研究. 能源与环保. 2024(02): 281-286 .
    4. 马宏伟,李烺,薛旭升,王川伟,王赛赛,赵英杰,周文剑,张恒. 护盾式临时支护机器人带压行驶液压控制系统研究. 工矿自动化. 2024(07): 21-31 . 本站查看
    5. 苏龙庆,兰宇,程戈. 深部复合顶板巷道支护技术研究与应用. 煤炭与化工. 2024(11): 1-4 .
    6. 梁成. 厚油页岩顶板巷道支护参数设计及优化分析. 陕西煤炭. 2024(12): 59-64 .
    7. 陈泽年,徐景果,张鹏,郭伟. 高应力回采巷道变形特征及数值模拟. 煤炭科技. 2023(02): 7-12 .
    8. 田劼,李阳,张磊,刘振. 基于PSO-BP神经网络的临时支架支撑力自适应控制. 工矿自动化. 2023(07): 67-74 . 本站查看
    9. 郭罡业,郭玉. 软弱煤岩复合顶板巷道围岩控制技术研究. 能源与环保. 2023(12): 48-55 .
    10. 雷咸锐,李清汝. 一起典型的瓦斯爆炸事故原因探析及对策研究. 煤. 2022(10): 90-93 .
    11. 韩世栋. 破碎围岩巷道变形因素分析及支护优化设计. 江西煤炭科技. 2021(02): 119-123 .
    12. 陈健,鲁义,于顺才,丁仰卫,李亮. 再生顶板破坏特性分析及防控综述. 科技视界. 2021(32): 167-168 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (116) PDF downloads (16) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return