MA Tianbing, WANG Xiaodong, DU Fei, CHEN Nanna. Fault diagnosis of rigid cage guide based on wavelet packet and BP neural network[J]. Journal of Mine Automation, 2018, 44(8): 76-80. DOI: 10.13272/j.issn.1671-251x.2018010051
Citation: MA Tianbing, WANG Xiaodong, DU Fei, CHEN Nanna. Fault diagnosis of rigid cage guide based on wavelet packet and BP neural network[J]. Journal of Mine Automation, 2018, 44(8): 76-80. DOI: 10.13272/j.issn.1671-251x.2018010051

Fault diagnosis of rigid cage guide based on wavelet packet and BP neural network

More Information
  • In view of problems that existing fault diagnosis methods of rigid cage guide could not eliminate influences of environmental factors and low recognition rate of joint faults, a method of fault diagnosis of rigid cage guide based on wavelet packet and BP neural network was proposed in order to improve accuracy of identification of fault types of rigid cage guide. Experimental platform of lifting system of vertical shaft was set up to simulate two typical fault types of rigid cage guide including step protrusion and joint failure, and vibration acceleration signal of lifting vessel was collected. Wavelet packet decomposition was applied to carry out energy analysis and extract fault characteristic parameters. The fault characteristic parameters were taken as input of BP neural network, and a new test sample was selected to detect diagnostic effect of the neural network. The experimental results show that the method has high accuracy of fault identification, and the confidence level reaches to 0.91.
  • Related Articles

    [1]YAO Yupeng, XIONG Wu. Periodic pressure prediction of working face based on dynamic adaptive sailfish optimization BP neural network[J]. Journal of Mine Automation, 2024, 50(8): 30-37. DOI: 10.13272/j.issn.1671-251x.2024060060
    [2]CUI Lizhen, XU Fanfei, WANG Qiaoli, GAO Lili. Underground adaptive positioning algorithm based on PSO-BP neural network[J]. Journal of Mine Automation, 2018, 44(2): 74-79. DOI: 10.13272/j.issn.1671-251x.2017090028
    [3]SUN Huiying, LIN Zhongpeng, HUANG Can, CHEN Peng. Fault diagnosis of mine ventilator based on improved BP neural network[J]. Journal of Mine Automation, 2017, 43(4): 37-41. DOI: 10.13272/j.issn.1671-251x.2017.04.009
    [4]LIU Jinwei, XIE Xionggang, FANG Jing. Effect analysis of coal seam water infusion based on genetic algorithm-BP neural network[J]. Journal of Mine Automation, 2016, 42(1): 48-51. DOI: 10.13272/j.issn.1671-251x.2016.01.014
    [5]WEI Wenhui, GUO Ye. Boundary effects optimization of ZigBee wireless location based on BP neural network[J]. Journal of Mine Automation, 2014, 40(11): 65-70. DOI: 10.13272/j.issn.1671-251x.2014.11.016
    [6]WANG Sheguo, TIAN Zhimin, ZHANG Feng, WU Shasha. System of coal and gas outburst prediction based on improved BP neural network[J]. Journal of Mine Automation, 2014, 40(5): 34-37. DOI: 10.13272/j.issn.1671-251x.2014.05.009
    [7]ZHANG Ning, REN Mao-wen, LIU Ping. Identification of coal-rock interface based on principal component analysis and BP neural network[J]. Journal of Mine Automation, 2013, 39(4): 55-58.
    [8]LI Mao-dong, LIANG Yong-zhi, JIA Wen-pei, XIA Lu-yi. Application of BP neural network method based on genetic optimization in methane detectio[J]. Journal of Mine Automation, 2013, 39(2): 51-53.
    [9]ZHAO Yan-ming. Predicting Model of Gas Content Based on Improved BP Neural Network[J]. Journal of Mine Automation, 2009, 35(4): 10-13.
    [10]HAN Bing, FU Hua. Gas Monitoring System Based on Data Fusion with BP Neural Network[J]. Journal of Mine Automation, 2008, 34(4): 10-13.
  • Cited by

    Periodical cited type(1)

    1. 廉博翔,弥浪涛,李尚杰,郭继尧. 煤矿井下巷道三维建模研究. 工矿自动化. 2025(05): 147-154 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (75) PDF downloads (11) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return