ZHANG Liya. Research on intelligent video analysis and early warning system for mine[J]. Journal of Mine Automation, 2017, 43(11): 16-20. DOI: 10.13272/j.issn.1671-251x.2017.11.004
Citation: ZHANG Liya. Research on intelligent video analysis and early warning system for mine[J]. Journal of Mine Automation, 2017, 43(11): 16-20. DOI: 10.13272/j.issn.1671-251x.2017.11.004

Research on intelligent video analysis and early warning system for mine

More Information
  • For the problem that existing mine video monitoring system could only monitor environment and equipment operation status, but could not effectively monitor moving targets behavior such as person, an intelligent video analysis and early warning system for mine was designed. The system composition and architecture were introduced, and system realization principle was expounded taking belt coal-piling detection and person behavior detection and recognition as examples. Some tests were taken out in coal mine underground including belt coal-piling detection, person detection in danger area, system recognition rate and system response time. The tests results show that the system can effectively detect coal amount on belt and danger area range, whose recognition response time is not more than 2 seconds and successful recognition rate is not less than 98%.
  • Related Articles

    [1]ZHANG Xuhui, YU Henghan, DU Yuyang, YANG Wenjuan, ZHAO Yihui, WAN Jicheng, WANG Yanqun, ZHAO Dian, TANG Duwei. Detection method for dangerous behaviors of underground coal mine personnel[J]. Journal of Mine Automation, 2025, 51(5): 64-71. DOI: 10.13272/j.issn.1671-251x.2025010043
    [2]LIU Xiaoliang, YANG Guangrong. Design of fault monitoring and early warning system for mining tape machines based on impact pulse sensors[J]. Journal of Mine Automation, 2024, 50(S1): 130-133,160.
    [3]LI Bo, GUO Xingran, LI Juanli, WANG Xuewen, XIA Rui. A fault warning method for scraper conveyor chain transmission system based on LSTM-Adam[J]. Journal of Mine Automation, 2023, 49(9): 140-146. DOI: 10.13272/j.issn.1671-251x.18086
    [4]ZHANG Xuhui, BAI Linna, YANG Hongqiang. Research on fault warning technology for cutting part of cantilever roadheader based on virtual and real fusion data[J]. Journal of Mine Automation, 2023, 49(8): 9-19. DOI: 10.13272/j.issn.1671-251x.2023050063
    [5]LI Dongfa, ZANG Yanjie, SHI Jilin. Intelligent mine fire early warning system[J]. Journal of Mine Automation, 2022, 48(S1): 112-115,120.
    [6]LI Xiangong, SONG Xuefeng, ZHANG Minghui, TANG Run, LIU Feng. Research on mine safety situation forecast and early warning[J]. Journal of Mine Automation, 2021, 47(5): 35-39. DOI: 10.13272/j.issn.1671-251x.17756
    [7]YANG Yiqing, MA Hongwei, FAN Hongwei, ZHANG Xuhui, ZHANG Chao, HAN Lei. Design of online fault diagnosis and early warning system for coal mine rotating machinery[J]. Journal of Mine Automation, 2019, 45(10): 104-108. DOI: 10.13272/j.issn.1671-251x.2019010092
    [8]WANG Liang. Detection and early warning of coal mine underground safety event based on event drive[J]. Journal of Mine Automation, 2016, 42(8): 33-37. DOI: 10.13272/j.issn.1671-251x.2016.08.009
    [9]WU Yan-chang, WANG Hong. Application of perception technology of Internet of Things in early warning system of dangerous sources[J]. Journal of Mine Automation, 2013, 39(9): 50-53. DOI: 10.7526/j.issn.1671-251X.2013.09.014
    [10]ZHAO Wei, BAI Fa-song, WU Hang, DANG Bao-quan, LIN Xiao-bo. Research of Early Warning System for Danger Source in Process of Tunnel Drifting of High Outburst Mine[J]. Journal of Mine Automation, 2010, 36(4): 14-17.
  • Cited by

    Periodical cited type(25)

    1. 谷彬,刘清. 煤矿综采工作面监控视频图像识别系统. 煤矿机械. 2025(03): 198-201 .
    2. 谷树伟,马孝威. 煤矿智能压风系统的应用研究. 煤炭工程. 2024(03): 91-95 .
    3. 孔铭,刘宏阳,颜文振,吴璞,董洋. 基于YOLOv7的地下矿提升系统罐道木磨损检测. 自动化应用. 2024(14): 208-210+213 .
    4. 钱旺,闫力维,冯占科. 大型能源集团安全预警“叫应”机制应用与研究. 煤炭工程. 2024(S1): 13-20 .
    5. 程德强,钱建生,郭星歌,寇旗旗,徐飞翔,顾军,高亚超,赵金升. 煤矿安全生产视频AI识别关键技术研究综述. 煤炭科学技术. 2023(02): 349-365 .
    6. 毛清华,郭文瑾,翟姣,王荣泉,尚新芒,李世坤,薛旭升. 煤矿带式输送机异常状态视频AI识别技术研究. 工矿自动化. 2023(09): 36-46 . 本站查看
    7. 张立亚,王寓,郝博南. 基于改进度量学习的煤矿井下行人重识别方法研究. 工矿自动化. 2023(09): 84-89+166 . 本站查看
    8. 程健,李昊,马昆,刘斌,孙大智,马永壮,殷罡,王广福,李和平. 矿井视觉计算体系架构与关键技术. 煤炭科学技术. 2023(09): 202-218 .
    9. 程德强,寇旗旗,江鹤,徐飞翔,宋天舒,王晓艺,钱建生. 全矿井智能视频分析关键技术综述. 工矿自动化. 2023(11): 1-21 . 本站查看
    10. 胡金成,张立斌,蒋泽,姚超修,蒋志龙,王正义. 基于AI视频分析的煤矿瓦斯抽采钻场远程监督管理方法. 工矿自动化. 2023(11): 167-172 . 本站查看
    11. 周爱平,曹正远. 煤矿胶带运输监控系统技术现状及智能化方案设计. 工矿自动化. 2023(S2): 13-17 . 本站查看
    12. 张立亚. 基于5G通信的矿山可视化智能监控技术. 煤炭技术. 2022(01): 191-194 .
    13. 王存利. 智能视频在煤矿安全监控方面的应用分析. 能源技术与管理. 2022(03): 191-193 .
    14. 张旭辉,闫建星,张超,万继成,王利欣,胡成军,王力,王东. 基于改进YOLOv5s+DeepSORT的煤块行为异常识别. 工矿自动化. 2022(06): 77-86+117 . 本站查看
    15. 王利欣,杨秀宇,袁鹏喆,尉瑞,秦文光,李波,张恩明. 智能掘进工作面智能视频安全管理系统的应用. 煤矿机械. 2022(09): 200-203 .
    16. 张瑞庭. 煤矿智能视频预警系统架构及应用场景研究. 煤炭工程. 2022(10): 166-170 .
    17. 刘孝军,王飞. 基于AI的煤矿视频智能分析技术. 煤炭科学技术. 2022(S2): 260-264 .
    18. 姜文涛,王梓民,张驰. 基于曲量场空间的皮带堆煤识别. 传感器与微系统. 2021(01): 140-143 .
    19. 张立亚. 基于图像识别的煤矿井下安全管控技术. 煤矿安全. 2021(02): 165-168 .
    20. 李敬兆,秦晓伟,汪磊. 基于边云协同框架的煤矿井下实时视频处理系统. 工矿自动化. 2021(12): 1-7 . 本站查看
    21. 葛静涛,姚荣昌,马继胜. 延川南煤层气井无损智能间抽技术研究. 油气藏评价与开发. 2020(04): 97-100 .
    22. 李文峰,白慧. 博克斯-詹金斯模型在煤矿顶板安全监测中的应用分析. 电子器件. 2019(03): 802-805 .
    23. 曾微波,童矿,江岭. 基于倾斜摄影与BIM的矿山实景建模方法研究. 金属矿山. 2019(10): 172-177 .
    24. 马永亮,张博洋,雷军. 露天矿山视频智能后处理系统设计与应用. 采矿技术. 2019(06): 138-141 .
    25. 金利国,赵存会. 煤矿探水视频管理系统. 工矿自动化. 2018(09): 102-104 . 本站查看

    Other cited types(15)

Catalog

    ZHANG Liya

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (168) PDF downloads (32) Cited by(40)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return