XING Zhenguo, DU Wenfeng, LIANG Zhe, HU Jinkui. Design of real-time tracking monitoring and early warning system for coal mine groundwater[J]. Journal of Mine Automation, 2017, 43(8): 72-75. DOI: 10.13272/j.issn.1671-251x.2017.08.014
Citation: XING Zhenguo, DU Wenfeng, LIANG Zhe, HU Jinkui. Design of real-time tracking monitoring and early warning system for coal mine groundwater[J]. Journal of Mine Automation, 2017, 43(8): 72-75. DOI: 10.13272/j.issn.1671-251x.2017.08.014

Design of real-time tracking monitoring and early warning system for coal mine groundwater

More Information
  • In order to improve hydrological monitoring of coal mine groundwater and water disaster prediction level, a real-time tracking monitoring and early warning system for coal mine groundwater based on intelligent water level meter was designed. The system uses metal probes of a water sensor to judge whether the intelligent water level meter is in aquifer, and downs the intelligent water level meter into water automatically when water level drops below the intelligent water lever meter, so as to avoid pseudo data. The system obtains water pressure data through a hydraulic sensor, and uses upper computer to fit and analyze the data, so as to calculate water level. The test results show that the system can run stably and early warn water level mutation of aquifer in 5 s, whose measurement error of water level is not more than 2 cm.
  • Related Articles

    [1]ZHANG Qinghua, NING Xiaoliang, SONG Zhiqiang, HE Shudong. Early warning technology of regional security situation of gas disasters[J]. Journal of Mine Automation, 2020, 46(7): 42-48. DOI: 10.13272/j.issn.1671-251x.17632
    [2]WANG Yongju. Application of online hydrological monitoring system in Jinjie Coal Mine[J]. Journal of Mine Automation, 2018, 44(10): 90-93. DOI: 10.13272/j.issn.1671-251x.17332
    [3]LIU Hao, WEN Guangchao, XIE Hongbo, WANG Linlin, SHI Yankun, JIANG Zeyu. Construction of case base system of mine water disaster under background of big data[J]. Journal of Mine Automation, 2017, 43(1): 69-73. DOI: 10.13272/j.issn.1671-251x.2017.01.017
    [4]YAN Guang, WANG Xin, ZONG Xin, ZHAO Duan. Design of distributed water inrush monitoring system of coal mine[J]. Journal of Mine Automation, 2015, 41(4): 5-8. DOI: 10.13272/j.issn.1671-251x.2015.04.002
    [5]BO Yingqiang, OUYANG Mingsan, LI Yeliang, SHI Tailu, WANG Man, DENG Jinwei. Monitoring system of mine hydrological information based on ZigBee[J]. Journal of Mine Automation, 2014, 40(10): 84-87. DOI: 10.13272/j.issn.1671-251x.2014.10.023
    [6]WU Bin, OUYANG Mingsan, ZHANG Lingling. Design of mine wireless hydrology monitoring substation based on WCDMA network[J]. Journal of Mine Automation, 2014, 40(2): 99-101. DOI: 10.13272/j.issn.1671-251x.2014.02.026
    [7]DUAN Li-hong. Design of pre-warning system of coal mine water disaster[J]. Journal of Mine Automation, 2013, 39(9): 116-118. DOI: 10.7526/j.issn.1671-251X.2013.09.030
    [8]WANG Gang. Design of Integrated System of Disaster Early-warning Rescue and Environment Prediction of Mine[J]. Journal of Mine Automation, 2012, 38(6): 32-35.
    [9]MIAO Juan-juan, XU Le-nia. Design of a Novel Mine-used Intelligent Water-pressure Sensor[J]. Journal of Mine Automation, 2012, 38(1): 11-14.
    [10]CHENG Feng-xia, RAO Jian-hua, ZHANG Xiao-ming, WANG Lan, YAO Zhi-gong. Design of Data Collection System of Mine Water Disaster Based on SPI Bus Technology[J]. Journal of Mine Automation, 2008, 34(3): 46-48.
  • Cited by

    Periodical cited type(4)

    1. 宋秋阳,张志刚,郭江涛,林引. 基于串联反激的矿用电源设计. 矿业安全与环保. 2025(02): 193-198 .
    2. 李龙. 本安电源柔性智能老化系统的研究. 煤矿机电. 2023(02): 39-43 .
    3. 刘扬清,周远. 矿用宽输入电压范围级联变换器设计. 工矿自动化. 2022(05): 123-127 . 本站查看
    4. 孙健,李智,林国汉,颜金娥. 宽电压输入单相非隔离逆变及模拟并网装置. 湖南工程学院学报(自然科学版). 2021(03): 18-25 .

    Other cited types(3)

Catalog

    HU Jinkui

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (67) PDF downloads (16) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return