WANG Xing, BAI Shangwang, PAN Lihu, CHEN Lichao. A mine image enhancement algorithm[J]. Journal of Mine Automation, 2017, 43(3): 48-52. DOI: 10.13272/j.issn.1671-251x.2017.03.011
Citation: WANG Xing, BAI Shangwang, PAN Lihu, CHEN Lichao. A mine image enhancement algorithm[J]. Journal of Mine Automation, 2017, 43(3): 48-52. DOI: 10.13272/j.issn.1671-251x.2017.03.011

A mine image enhancement algorithm

More Information
  • For poor images captured by coal mine video monitoring system with low contrast, uneven illumination and a lot of noise, a single scale Retinex algorithm based on simultaneous denoising of weighted guided filtering was proposed for underground image enhancement. Firstly, low-frequency components of an image are estimated by the weighted guided filter, which replaces Gaussian filter in single scale Retinex algorithm. Secondly, high-frequency components of the image are denoised by the weighted guided filter. Finally, an enhanced image is obtained through conversion from log domain to real field. The subjective visual effect and objective evaluation results show the algorithm has better visual effect and higher image processing speed than traditional image enhancement algorithms.
  • Related Articles

    [1]GAI Yonggang. A defogging algorithm for coal mine underground images based on dark channel guided filtering and lighting correction[J]. Journal of Mine Automation, 2024, 50(6): 89-95. DOI: 10.13272/j.issn.1671-251x.2024030048
    [2]MU Qi, GE Xiangfu, WANG Xinyue, LI Lei, LI Zhanli. A coal mine underground image enhancement method based on multi-scale gradient domain guided image filtering[J]. Journal of Mine Automation, 2024, 50(6): 79-88, 111. DOI: 10.13272/j.issn.1671-251x.2023080126
    [3]FENG Wei, YAO Wanqiang, LIN Xiaohu, ZHENG Junliang, XIANGLI Hailong, XUE Zhiqiang. Visual simultaneous localization and mapping algorithm of coal mine underground considering image enhancement[J]. Journal of Mine Automation, 2023, 49(5): 74-81. DOI: 10.13272/j.issn.1671-251x.2022090025
    [4]HONG Yan, ZHU Danping, GONG Pingshun. Retinex mine image enhancement algorithm based on TopHat weighted guided filtering[J]. Journal of Mine Automation, 2022, 48(8): 43-49. DOI: 10.13272/j.issn.1671-251x.2022020029
    [5]TANG Shoufeng, SHI Ke, TONG Guangming, SHI Jingcan, LI Huashuo. A mine low illumination image enhancement algorithm[J]. Journal of Mine Automation, 2021, 47(10): 32-36. DOI: 10.13272/j.issn.1671-251x.2021060052
    [6]WANG Hongdong, GUO Weidong, ZHU Meiqiang, LEI Meng. An enhancement algorithm for low-illumination image of underground coal mine[J]. Journal of Mine Automation, 2019, 45(11): 81-85. DOI: 10.13272/j.issn.1671-251x.17498
    [7]FU Yan, LI Yao, YAN Binbi. An underground video image enhancement algorithm[J]. Journal of Mine Automation, 2018, 44(7): 80-83. DOI: 10.13272/j.issn.1671-251x.2017120014
    [8]LIU Xiaoyang, QIAO Tong, QIAO Zhi. Image enhancement method of mine based on bilateral filtering and Retinex algorithm[J]. Journal of Mine Automation, 2017, 43(2): 49-54. DOI: 10.13272/j.issn.1671-251x.2017.02.011
    [9]LI Xinnia. Improved non-local means filtering algorithm for video monitoring image of coal mine[J]. Journal of Mine Automation, 2015, 41(6): 66-70. DOI: 10.13272/j.issn.1671-251x.2015.06.016
    [10]WANG Xiaobing, YAO Xueqing, QIU Yinguo, SUN Jiuyun. A new filtering algorithm for video monitoring image of coal mine[J]. Journal of Mine Automation, 2014, 40(11): 76-80. DOI: 10.13272/j.issn.1671-251x.2014.11.018
  • Cited by

    Periodical cited type(12)

    1. 牟琦,葛相甫,王新月,李磊,李占利. 基于多尺度梯度域引导滤波的煤矿井下图像增强方法. 工矿自动化. 2024(06): 79-88+111 . 本站查看
    2. 孙林,陈圣,姚旭龙,张艳博,陶志刚,梁鹏. 矿井智能监控目标识别的图像增强方法与应用. 煤炭学报. 2024(S1): 495-504 .
    3. 郝明月,闵冰冰,张新建,赵作鹏,吴晨,王欣. 基于改进YOLOv5s的矿工排队检测方法. 工矿自动化. 2023(11): 160-166 . 本站查看
    4. 王诚聪,刘亚静. 矿井复杂环境视频监控图像增强算法研究. 煤炭工程. 2021(04): 147-151 .
    5. 赵谦,钱渠,任志奇. BEMD分解的矿下图像增强算法. 西安科技大学学报. 2020(03): 484-491 .
    6. 付元. 基于L-R算法的矿井监视图像复原装置设计. 工矿自动化. 2020(08): 101-105+116 . 本站查看
    7. 李晓宇,吕进来,郝晓丽. 一种改进的Retinex矿井图像增强算法. 科学技术与工程. 2020(29): 12028-12034 .
    8. 朱礼义,李巧月,李国超,郭小兵,韩习习,祝汉城. 基于HSI空间融合的矿井图像增强算法. 计算机工程与设计. 2019(10): 2926-2930+3008 .
    9. 刘健,郭潇,徐鑫龙,赵牛杰,赵腾. 基于Retinex理论的低照度图像增强技术. 火力与指挥控制. 2019(09): 139-143 .
    10. 王洪栋,郭伟东,朱美强,雷萌. 一种煤矿井下低照度图像增强算法. 工矿自动化. 2019(11): 81-85 . 本站查看
    11. 杨丽丽,盛国. 一种基于卷积神经网络的矿井视频图像降噪方法. 矿业研究与开发. 2018(02): 106-110 .
    12. 付燕,李瑶,严斌斌. 一种煤矿井下视频图像增强算法. 工矿自动化. 2018(07): 80-83 . 本站查看

    Other cited types(20)

Catalog

    CHEN Lichao

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (134) PDF downloads (23) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return