ZHAO Yanfei, YANG Yanli, WANG Lijua. Surface fault location of conveyor belt based on saliency and deep convolution neural network[J]. Journal of Mine Automation, 2016, 42(12): 72-77. DOI: 10.13272/j.issn.1671-251x.2016.12.016
Citation: ZHAO Yanfei, YANG Yanli, WANG Lijua. Surface fault location of conveyor belt based on saliency and deep convolution neural network[J]. Journal of Mine Automation, 2016, 42(12): 72-77. DOI: 10.13272/j.issn.1671-251x.2016.12.016

Surface fault location of conveyor belt based on saliency and deep convolution neural network

More Information
  • A surface fault location of conveyor belt based on saliency and deep convolution neural network was proposed. The method imprints figures on the edge of upper and lower surfaces of conveyor belt, and uses image processing technology to detect the number in belt image, so as to indirectly locate surface fault of the conveyor belt. Firstly, the acquired image of the conveyor belt is preprocessed by Gaussian filtering and gray-scale linear transformation to improve image quality and enhance contrast between the background and the target. Then, visual saliency treatment is conducted to the preprocessed image according to spectral residual theory, and a visual saliency map containing numeric regions is obtained. Finally, saliency map is classified by using the convolution neural network to distinguish digital region from non-digital region. The experimental results show that the method can detect number of conveyor belt image and realize surface fault location of conveyor belt.
  • Related Articles

    [1]LUO Wen. Fault diagnosis of mine roof support swash plate based on SDP image processing algorithm[J]. Journal of Mine Automation, 2024, 50(S1): 7-10.
    [2]LI Gang, ZHANG Yabing, YANG Qinghe, ZOU Junpeng, CAI Tian, LIU Hang, ZHAO Yiming. Super-resolution reconstruction of rock CT images based on Real-ESRGAN[J]. Journal of Mine Automation, 2023, 49(11): 84-91. DOI: 10.13272/j.issn.1671-251x.2023080093
    [3]DUAN Yuxiu, DU Wenhua, ZENG Zhiqiang, WANG Rijun, DUAN Nengquan, LI Xiaona. Electric bucket teeth missing detection method based on machine visio[J]. Journal of Mine Automation, 2018, 44(7): 75-80. DOI: 10.13272/j.issn.1671-251x.2018030006
    [4]MI Qiang, XU Yan, LIU Bin, XU Yunjie. Extraction method of texture feature of images of coal and gangue[J]. Journal of Mine Automation, 2017, 43(5): 26-30. DOI: 10.13272/j.issn.1671-251x.2017.05.007
    [5]FENG Weibing, HU Junmei, CAO Genniu. Underground image denoising method based on improved simplified pulse coupled neural network[J]. Journal of Mine Automation, 2014, 40(5): 54-58. DOI: 10.13272/j.issn.1671-251x.2014.05.014
    [6]WANG Meng, LI Yu-liang, WANG Qing-fei. Application Research of Image Processing in Gas Monitoring of Coal Mine[J]. Journal of Mine Automation, 2011, 37(7): 61-64.
    [7]ZHANG Chuan-kai, LI Yu-liang, LIU Jing-yua. Speed Measuring Method of Underground Locomotive Based on Image Processing Technology[J]. Journal of Mine Automation, 2011, 37(7): 53-56.
    [8]XIA Hai-bo. Research of Image Enhancement and Contour Extracting Based on Visual C++[J]. Journal of Mine Automation, 2011, 37(3): 44-47.
    [9]ZHAO Xiao-xia~(, 2), WANG Ru-lin~. Enhancement Algorithm of Fog-degraded Image Based on Multiscale Retinex[J]. Journal of Mine Automation, 2009, 35(10): 62-66.
    [10]WANG Hong-yuan, SHI Lian-min, ZHOU Yue, CHENG Qi-cai, YANG Xiao-ying. Method of Digital Image Processing Based on DSP and S-function and Its Implementatio[J]. Journal of Mine Automation, 2009, 35(3): 24-27.
  • Cited by

    Periodical cited type(11)

    1. 张刚. 自动防喷一体式钻孔机器人的设计与研究. 煤矿机械. 2025(09)
    2. 初绍飞. 智能控制技术在矿山钻机精准钻进中的应用. 工矿自动化. 2025(S1) 本站查看
    3. 陈柯宇, 陈科宇, 秦怡. 自动钻机动力头转速控制优化策略. 矿山机械. 2025(06)
    4. 陈韬, 张幼振, 钟自成. 基于钻孔钻进过程数据驱动的地层可钻性预测方法. 煤炭工程. 2025(05)
    5. 王清峰,刘洋,陈航,史书翰,崔小超. 煤矿井下钻进工况参数智能控制技术发展与展望. 矿业安全与环保. 2025(01): 20-29 .
    6. 陈科宇. 矿用钻孔机器人快速自适应接扣技术研究. 矿山机械. 2025(05): 1-4 .
    7. 马涛,张超,王巍,魏佳,刘贤玉. 涠西南凹陷基于机械比能的钻头磨损评价方法. 中国石油和化工标准与质量. 2024(01): 4-6 .
    8. 张能,汪川迪,安鹏,张羽,王利达,王杰. 基于PSO-BP的油气井钻速预测技术优化与仿真实验. 粘接. 2024(06): 19-22 .
    9. 唐光伟,闫政,高有山,孟宏君,王猛. 基于线性自抗扰防卡压力流量回转系统研究. 现代电子技术. 2024(22): 125-130 .
    10. 李泉新,程卓尔,方俊,牟全斌,刘飞,丛琳. 定向长钻孔瓦斯抽采负压变化规律及监测控制技术研究进展. 煤田地质与勘探. 2024(11): 171-182 .
    11. 李旺年,陆承达,张幼振,宋海涛,田盛楠,黄恒宇,陈略峰,吴敏. 基于等价输入干扰方法的钻孔机器人给进力跟踪控制. 煤田地质与勘探. 2023(09): 171-179 .

    Other cited types(3)

Catalog

    WANG Lijua

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (62) PDF downloads (11) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return