LAN Yongjun, GONG Lijiao, CAI Xinhong, LI Hongwei. Analysis of frequency characteristics of magnetic coupled resonant wireless power transmission system[J]. Journal of Mine Automation, 2016, 42(5): 67-70. DOI: 10.13272/j.issn.1671-251x.2016.05.015
Citation: LAN Yongjun, GONG Lijiao, CAI Xinhong, LI Hongwei. Analysis of frequency characteristics of magnetic coupled resonant wireless power transmission system[J]. Journal of Mine Automation, 2016, 42(5): 67-70. DOI: 10.13272/j.issn.1671-251x.2016.05.015

Analysis of frequency characteristics of magnetic coupled resonant wireless power transmission system

More Information
  • Factors that affect transmission power and efficiency of magnetic coupled wireless power transmission system based on self-resonance coils and magnetic coupled wireless power transmission system based on series capacitor tuning were obtained according to equivalent circuit models, and frequency characteristics of the two systems were analyzed. The experimental results show that there is no frequency splitting in the magnetic coupled wireless power transmission system based on self-resonance coils with larger transmission power, while there is frequency splitting in the magnetic coupled wireless power transmission system based on series capacitor tuning when distance between receiving coil and sending coil is less than a critical value, because resonant frequency is influenced by coil equivalent shunt capacitance and external series capacitance.
  • Related Articles

    [1]ZHANG Lian, YANG Hongjie, JING Tingwei, LI Tao, ZHANG Lu. Analysis of full resonance characteristics of underground magnetic coupling wireless power transfer system[J]. Journal of Mine Automation, 2022, 48(2): 83-92. DOI: 10.13272/j.issn.1671-251x.2021110064
    [2]ZHANG Lian, JING Tingwei, ZHANG Lu, LI Mengtian, YANG Kai. Research on frequency stability of magnetic coupling wireless power transfer system[J]. Journal of Mine Automation, 2021, 47(3): 95-100. DOI: 10.13272/j.issn.1671-251x.2020080090
    [3]SUN Xiangyu, GONG Lijiao, LI Hongwei, JIN Zhengwei. Research on transmission characteristics of magnetically coupled resonant wireless power transfer system[J]. Journal of Mine Automation, 2020, 46(4): 54-59. DOI: 10.13272/j.issn.1671-251x.2019090001
    [4]FENG Liu, HE Jialua. Research on four-coil structure of magnetically coupled resonant wireless power transmission system[J]. Journal of Mine Automation, 2019, 45(5): 73-78. DOI: 10.13272/j.issn.1671-251x.17385
    [5]LI Xinheng, GONG Lijiao, FENG Li, SUN Xiangyu, LI Yang, LI Hui. Analysis of frequency characteristics of three-coil magnetic coupling resonant wireless power transmission system[J]. Journal of Mine Automation, 2018, 44(3): 91-96. DOI: 10.13272/j.issn.1671-251x.2017090019
    [6]FAN Yingjie, ZHANG Kairu, ZHANG Linlin, WANG Yi, DI Dongzhao. Study of asymmetrical magnetic coupled resonant wireless power transmission system[J]. Journal of Mine Automation, 2016, 42(5): 63-66. DOI: 10.13272/j.issn.1671-251x.2016.05.014
    [7]FAN Yingjie, ZHANG Kairu, DI Dongzhao, GU Huali, HAN Lu. Study of wireless power transmission system of small size resonator[J]. Journal of Mine Automation, 2016, 42(3): 48-51. DOI: 10.13272/j.issn.1671-251x.2016.03.011
    [8]ZHANG Guoyuan, WANG Xi, ZHAO Duan. Analysis of transmission characteristics of magnetically-coupled resonant wireless power transmission system[J]. Journal of Mine Automation, 2015, 41(8): 85-88. DOI: 10.13272/j.issn.1671-251x.2015.08.021
    [9]XUE Hui, LIU Xiaowen, SUN Zhifeng, ZHANG Guoyuan. Research of load characteristics of wireless power transmission system based on magnetic coupling resonance[J]. Journal of Mine Automation, 2015, 41(3): 66-70. DOI: 10.13272/j.issn.1671-251x.2015.03.017
    [10]ZHENG Li-na. Testing Frequency Characteristic of Analytical Circuit Based on EWB Software[J]. Journal of Mine Automation, 2001, 27(5): 35-36.

Catalog

    LI Hongwei

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (47) PDF downloads (10) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return