SUN Shiling. Product process of carrier catalytic methane detection component based on MEMS technology[J]. Journal of Mine Automation, 2016, 42(4): 47-50. DOI: 10.13272/j.issn.1671-251x.2016.04.011
Citation: SUN Shiling. Product process of carrier catalytic methane detection component based on MEMS technology[J]. Journal of Mine Automation, 2016, 42(4): 47-50. DOI: 10.13272/j.issn.1671-251x.2016.04.011

Product process of carrier catalytic methane detection component based on MEMS technology

More Information
  • Based on analysis of carrier catalyst methane detecting principle, advanced microelectro mechanical system(MEMS) technology was proposed to improve product process of traditional carrier catalytic methane detection components and the specific product process was introduced. Performance of component p produced by MEMS was tested. The results show that the carrier catalytic methane detection component based on MEMS technology has obvious improvements in size, power consumption, anti-toxic and consistency than the traditional ones.
  • Related Articles

    [1]LIU Xiangtong, LI Man, SHEN Siyi, CAO Xiangang, LIU Junqi. Measurement system for key attitude parameters of hydraulic support[J]. Journal of Mine Automation, 2024, 50(4): 41-49. DOI: 10.13272/j.issn.1671-251x.2023120006
    [2]CONG Lin, WANG Xiaolong, YAN Bi. Random error identification for MEMS gyro in coal mine underground[J]. Journal of Mine Automation, 2019, 45(10): 95-98. DOI: 10.13272/j.issn.1671-251x.2018090084
    [3]WANG Liying, QIN Shunli, MA Hongyu. Power optimization design of silicon microheater of mine-used MEMS methane sensor[J]. Journal of Mine Automation, 2018, 44(10): 19-23. DOI: 10.13272/j.issn.1671-251x.2018030024
    [4]ZHAO Yue, LAN Ying, QU Xian. Design of personnel positioning system in coal mine underground based on MEMS sensor[J]. Journal of Mine Automation, 2018, 44(8): 87-91. DOI: 10.13272/j.issn.1671-251x.17326
    [5]GUO Qinghua. Diagnosis and recognition of vibration interference in distributed laser methane detection system[J]. Journal of Mine Automation, 2018, 44(8): 1-6. DOI: 10.13272/j.issn.1671-251x.2018030088
    [6]SHEN Guojie. Research on pulse power supply of MEMS low power consumption catalytic methane sensor[J]. Journal of Mine Automation, 2018, 44(7): 27-31. DOI: 10.13272/j.issn.1671-251x.2018020033
    [7]TAN Kai, GUO Qinghua, ZHANG Yuanzheng, GOU Yi. Research of distributed multi-point laser methane detection system[J]. Journal of Mine Automation, 2017, 43(10): 65-69. DOI: 10.13272/j.issn.1671-251x.2017.10.013
    [8]GE Hua-min, WANG Xiao-jiang, CHEN Yong. Design of Infrared Methane Detection System Based on CAN Bus[J]. Journal of Mine Automation, 2009, 35(10): 119-122.
    [9]HAN Xiao-bing, LV Guang-jie, WANG Feng. Methane Infrared Detection System of Coal Mine[J]. Journal of Mine Automation, 2009, 35(3): 1-4.
    [10]XIONG Hong-yan, ZHANG Hong, YUE Hong-ping. Design of Optical Fiber Sensor Detection System of Methane[J]. Journal of Mine Automation, 2009, 35(2): 82-84.
  • Cited by

    Periodical cited type(6)

    1. 张贝贝,罗松飞. 基于STFT改进图像增强算法的模糊指纹痕迹检验技术. 山东理工大学学报(自然科学版). 2025(04): 41-46 .
    2. 王泰基. 基于ITLBO-AFSA优化FCM算法的矿井图像增强. 工矿自动化. 2024(S1): 25-28 . 本站查看
    3. 孙继平,李小伟. 基于图像内凹度的矿井外因火灾识别及抗干扰方法. 煤炭学报. 2024(07): 3253-3264 .
    4. 曹成名,李浩东,王腾飞. 声音增强技术在煤矿采空区勘探中的应用. 电声技术. 2024(08): 17-19 .
    5. 张海庆. 不同天气条件下光学图像清晰度实时增强研究. 自动化与仪器仪表. 2024(11): 39-42+47 .
    6. 丁文博,云龙. 基于RetinaNet深度网络的煤矿带式输送机异物智能识别方法. 中国煤炭. 2024(S1): 75-81 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (44) PDF downloads (7) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return