Citation: | CAO Xiangang, DUAN Yong, ZHAO Jiangbin, et al. Summary of research on health status assessment of fully mechanized mining equipment[J]. Journal of Mine Automation,2023,49(9):23-35, 97. DOI: 10.13272/j.issn.1671-251x.18143 |
[1] |
WANG Guofa,XU Yongxiang,REN Huaiwei. Intelligent and ecological coal mining as well as clean utilization technology in China:review and prospects[J]. International Journal of Mining Science and Technology,2019,29(2):161-169. DOI: 10.1016/j.ijmst.2018.06.005
|
[2] |
王国法,刘峰,庞义辉,等. 煤矿智能化——煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349-357.
WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349-357.
|
[3] |
王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1-36.
WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction(primary stage)[J]. Coal Science and Technology,2019,47(8):1-36.
|
[4] |
刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报,2021,46(1):1-15.
LIU Feng,CAO Wenjun,ZHANG Jianming,et al. Current technological innovation and development direction of the 14(th) Five-Year Plan period in China coal industry[J]. Journal of China Coal Society,2021,46(1):1-15.
|
[5] |
王国法,张良,李首滨,等. 煤矿无人化智能开采系统理论与技术研发进展[J]. 煤炭学报,2023,48(1):34-53.
WANG Guofa,ZHANG Liang,LI Shoubin,et al. Progresses in theory and technological development of unmanned smart mining system[J]. Journal of China Coal Society,2023,48(1):34-53.
|
[6] |
王学文,谢嘉成,郝尚清,等. 智能化综采工作面实时虚拟监测方法与关键技术[J]. 煤炭学报,2020,45(6):1984-1996.
WANG Xuewen,XIE Jiacheng,HAO Shangqing,et al. Key technologies of real-time virtual monitoring method for an intelligent fully mechanized coal-mining face[J] Journal of China Coal Society,2020,45(6):1984-1996.
|
[7] |
王家臣. 我国综放开采40年及展望[J]. 煤炭学报,2023,48(1):83-99.
WANG Jiachen. 40 years development and prospect of longwall top coal caving in China[J]. Journal of China Coal Society,2023,48(1):83-99.
|
[8] |
FINK O,WANG Qin,SVENSEN M,et al. Potential,challenges and future directions for deep learning in prognostics and health management applications[J]. Engineering Applications of Artificial Intelligence,2020,92:103678. DOI: 10.1016/j.engappai.2020.1036783.
|
[9] |
SHIN I,LEE J,LEE Y,et al. A framework for prognostics and health management applications toward smart manufacturing systems[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2018,5(4):535-554. DOI: 10.1007/s40684-018-0055-0
|
[10] |
DUAN Chaoqun,DENG Chao. Prognostics of health measures for machines with aging and dynamic cumulative damage[J]. IEEE/ASME Transactions on Mechatronics,2020,25(5):2264-2275. DOI: 10.1109/TMECH.2020.2995757
|
[11] |
FINK O,WANG Qin,SVENSEN M,et al. Potential,challenges and future directions for deep learning in prognostics and health management applications[J]. Engineering Applications of Artificial Intelligence,2020,92. DOI: 10.1016/j.engappai.2020.103678.
|
[12] |
SINGH V,GANGSAR P,PORWAL R,et al. Artificial intelligence application in fault diagnostics of rotating industrial machines:a state-of-the-art review[J]. Journal of Intelligent Manufacturing,2023,34:931-960. DOI: 10.1007/s10845-021-01861-5
|
[13] |
ZHAO Zhibin,WU Jingyao,LI Tianfu,et al. Challenges and opportunities of AI-enabled monitoring,diagnosis & prognosis:a review[J]. Chinese Journal of Mechanical Engineering,2021,34(3):16-44.
|
[14] |
樊红卫,张旭辉,曹现刚,等. 智慧矿山背景下我国煤矿机械故障诊断研究现状与展望[J]. 振动与冲击,2020,39(24):194-204.
FAN Hongwei,ZHANG Xuhui,CAO Xiangang,et al. Research status and prospect of fault diagnosis of China's coal mine machines under background of intelligent mine[J]. Journal of Vibration and Shock,2020,39(24):194-204.
|
[15] |
CHE Changchagn,WANG Huawei,NI Xiaomei,et al. Hybrid multimodal fusion with deep learning for rolling bearing fault diagnosis[J]. Measurement,2020,173(7). DOI: 10.1016/j.measurement.2020.108655.
|
[16] |
MA Meng,SUN Chuang,CHEN Xuefeng. Deep coupling autoencoder for fault diagnosis with multimodal sensory data[J]. IEEE Transactions on Industrial Informatics,2018,14(3):1137-1145. DOI: 10.1109/TII.2018.2793246
|
[17] |
李国发,王彦博,何佳龙,等. 机电装备健康状态评估研究进展及发展趋势[J]. 吉林大学学报(工学版),2022,52(2):267-279.
LI Guofa,WANG Yanbo,HE Jialong,et al. Research progress and development trend of health assessment of electromechanical equipment[J]. Journal of Jilin University(Engineering and Technology Edition),2022,52(2):267-279.
|
[18] |
赵丽琴,刘昶,曹明生,等. 复杂装备健康度评估方法研究综述[J]. 计算机测量与控制,2021,29(11):1-7,17.
ZHAO Liqin,LIU Chang,CAO Mingsheng,et al. Review of health assessment methods for complex equipment[J]. Computure Measurement & Control,2021,29(11):1-7,17.
|
[19] |
曹现刚,雷一楠,宫钰蓉,等. 基于组合赋权法的采煤机健康状态评估方法研究[J]. 煤炭科学技术,2020,48(6):135-141.
CAO Xiangang,LEI Yinan,GONG Yurong,et al. Study on health assessment method of shearer based on combination weighting method[J]. Coal Science and Technology,2020,48(6):135-141.
|
[20] |
翟文睿,李贤功,王佳奇,等. 采煤机性能退化评估方法及应用研究[J]. 工矿自动化,2020,46(12):57-63,100.
ZHAI Wenrui,LI Xiangong,WANG Jiaqi,et al. Research on shearer performance degradation evaluation and application[J]. Industry and Mine Automation,2020,46(12):57-63,100.
|
[21] |
焦晨浩. 矿用刮板运输机运行状态在线监测系统研究[D]. 太原:太原理工大学,2021.
JAO Chenhao. Research on on-line monitoring system of operation state of mine scraper conveyor[D]. Taiyuan:Taiyuan University of Technology,2021.
|
[22] |
赵巧芝. 我国刮板输送机发展现状、趋势及关键技术[J]. 煤炭工程,2020,52(8):183-187.
ZHAO Qiaozhi. Current status,development and key technologies of scraper conveyers[J]. Coal Engineering,2020,52(8):183-187.
|
[23] |
马旭东,王跃龙,田慕琴,等. 液压支架健康评估与寿命预测模型研究[J]. 煤炭科学技术,2021,49(3):141-148.
MA Xudong,WANG Yuelong,TIAN Muqin,et al. Health assessment and life prediction model of hydraulic support[J]. Coal Science and Technology,2021,49(3):141-148.
|
[24] |
王忠乐. 综采液压支架姿态监测及控制技术[J]. 工矿自动化,2022,48(增刊2):116-117,137.
WANG Zhongle. Attitude monitoring and control technology of fully mechanized mining hydraulic support[J]. Journal of Mine Automation,2022,48(S2):116-117,137.
|
[25] |
时培涛,张吉雄,张强,等. 综合赋权的TOPSIS充填采煤液压支架评价方法研究[J]. 采矿与安全工程学报,2023,40(3):543-553.
SHI Peitao,ZHANG Jixiong,ZHANG Qiang,et al. Comprehensive weighted TOPSIS method for evaluating the structure design of backfilling hydraulic support[J]. Journal of Mining & Safety Engineering,2023,40(3):543-553.
|
[26] |
陈强. 井下乳化液泵站远程在线状态监测系统的研究与设计[D]. 南昌:南昌航空大学,2017.
CHEN Qiang. Research and design of remote online condition monitoring system for underground emulsion pump station[D]. Nanchang:Nanchang Hangkong University,2017.
|
[27] |
牛锐祥,丁华,施瑞,等. 一种乳化液泵分级故障诊断方法[J]. 液压与气动,2021,45(11):47-53.
NIU Ruixiang,DING Hua,SHI Rui,et al. A hierarchical fault diagnosis method for emulsion pump[J]. Chinese Hydraulics & Pneumatics,2021,45(11):47-53.
|
[28] |
武秋俊,王建军,郭山国. 基于DL联合信息融合技术的刮板转载机故障诊断[J]. 煤矿机械,2021,42(2):152-154.
WU Qiujun,WANG Jianjun,GUO Shanguo. Fault diagnosis of scraper transfer machine based on DL joint with information fusion technology[J]. Coal Mine Machinery,2021,42(2):152-154.
|
[29] |
王海舰,黄梦蝶,高兴宇,等. 考虑截齿损耗的多传感信息融合煤岩界面感知识别[J]. 煤炭学报,2021,46(6):1995-2008.
WANG Haijian,HUANG Mengdie,GAO Xingyu,et al. Coal-rock interface recognition based on multi-sensor information fusion considering pick wear[J]. Journal of China Coal Society,2021,46(6):1995-2008.
|
[30] |
李曼,郑思雨,刘浩东,等. 采煤机滚筒高度测量传感器工作环境磁场仿真与屏蔽研究[J]. 煤炭科学技术,2022,50(8):204-209.
LI Man,ZHENG Siyu,LIU Haodong,et al. Study on magnetic field simulation and shielding design of shearer drum height measurement sensor working environment[J]. Coal Science and Technology,2022,50(8):204-209.
|
[31] |
张强,王海舰,郭桐,等. 基于截齿截割红外热像的采煤机煤岩界面识别研究[J]. 煤炭科学技术,2017,45(5):22-27.
ZHANG Qiang,WANG Haijian,GUO Tong,et al. Study on coal-rock interface recognition of coal shearer based on cutting infrared thermal image of picks[J]. Coal Science and Technology,2017,45(5):22-27.
|
[32] |
师建国,高广财,滕睿. 激励频率自适应的采煤机状态压电俘能监测装置研究[J]. 传感技术学报,2018,31(5):683-687.
SHI Jianguo,GAO Guangcai,TENG Rui. Study on piezoelectric energy harvesting device for state monitoring of shearer adaptive to excitation frequency[J]. Chinese Journal of Sensors and Actuators,2018,31(5):683-687.
|
[33] |
张旭辉,赖正鹏,吴中华,等. 新型双稳态压电振动俘能系统的理论建模与实验研究[J]. 振动工程学报,2019,32(1):87-96.
ZHANG Xuhui,LAI Zhengpeng,WU Zhonghua,et al. Theoretical modeling and experimental study of a new bistable piezoelectric vibration energy harvesting system[J]. Journal of Vibration Engineering,2019,32(1):87-96.
|
[34] |
王国法,赵国瑞,胡亚辉. 5G技术在煤矿智能化中的应用展望[J]. 煤炭学报,2020,45(1):16-23.
WANG Guofa,ZHAO Guorui,HU Yahui. Application prospect of 5G technology in coal mine intelligence[J]. Journal of China Coal Society,2020,45(1):16-23.
|
[35] |
原景超,郭涛,王思宁. 无线低功耗采煤机状态在线监测系统设计[J]. 煤炭工程,2018,50(8):18-20.
YUAN Jingchao,GUO Tao,WANG Sining. Design of wireless low power on line monitoring system for shearer[J]. Coal Engineering,2018,50(8):18-20.
|
[36] |
郁杰,许艳霞,王文梅. 基于人工智能技术的煤矿机电设备状态识别研究[J]. 煤炭技术,2022,41(4):143-146.
YU Jie,XU Yanxia,WANG Wenmei. Research on state identification of electromechanical equipment in coal mine based on artificial intelligence technology[J]. Coal Technology,2022,41(4):143-146.
|
[37] |
张睿,张义民,朱丽莎. 采煤机截割部齿轮箱体振动特性实验[J]. 振动与冲击,2019,38(13):179-184,196.
ZHANG Rui,ZHANG Yimin,ZHU Lisha. Tests for dynamic characteristics of shearer cutting gearbox[J]. Journal of Vibration and Shock,2019,38(13):179-184,196.
|
[38] |
段蛟龙,许春雨,宋建成,等. 基于振动模型的采煤机摇臂齿轮局部故障频谱分析[J]. 工矿自动化,2016,42(7):34-39.
DUAN Jiaolong,XU Chunyu,SONG Jiancheng,et al. Spectrum analysis of partial failure of shearer rocker gear based on vibration model[J]. Industry and Mine Automation,2016,42(7):34-39.
|
[39] |
毛清华,张旭辉,马宏伟,等. 采煤机摇臂齿轮传动系统振源定位分析方法[J]. 振动. 测试与诊断,2016,36(3):466-470,602.
MAO Qinghua,ZHANG Xuhui,MA Hongwei,et al. Vibration source location analysis method for ranging arm gear transmission system of shearer[J]. Journal of Vibration,Measurement & Diagnosis,2016,36(3):466-470,602.
|
[40] |
冷军发,郭松涛,荆双喜,等. 基于最小熵解卷积的带式输送机传动滚筒轴承故障诊断[J]. 河南理工大学学报(自然科学版),2015,34(4):514-519.
LENG Junfa,GUO Songtao,JING Shuangxi,et al. Rolling element bearing fault diagnosis of belt conveyor driving drum based on minimum entropy deconvolution[J]. Journal of Henan Polytechnic University(Natural Science),2015,34(4):514-519.
|
[41] |
朱兆霞,张福建. 小波分析在采煤机故障诊断中的应用[J]. 煤炭技术,2015,34(12):247-248.
ZHU Zhaoxia,ZHANG Fujian. Application of wavelet analysis in shearer fault diagnosis[J]. Coal Technology,2015,34(12):247-248.
|
[42] |
李力,倪松松. 基于改进小波去噪预处理和EEMD的采煤机齿轮箱故障诊断[J]. 中南大学学报(自然科学版),2016,47(10):3394-3400.
LI Li,NI Songsong. Shearer gearbox fault diagnosis based on improved wavelet denoising pretreatment and EEMD[J]. Journal of Central South University(Science and Technology),2016,47(10):3394-3400.
|
[43] |
郝尚清,庞新宇,王雪松,等. 基于盲源分离的采煤机摇臂轴承故障诊断方法[J]. 煤炭学报,2015,40(11):2509-2513.
HAO Shangqing,PANG Xinyu,WANG Xuesong,et al. Bearing fault diagnosis method for shearer rocker arm based on blind source separation[J]. Journal of China Coal Society,2015,40(11):2509-2513.
|
[44] |
刘旭南,赵丽娟,付东波,等. 采煤机截割部传动系统故障信号小波包分解方法研究[J]. 振动与冲击,2019,38(14):169-175,253.
LIU Xunan,ZHAO Lijuan,FU Dongbo,et al. Study on wavelet packet decomposition method for fault signal of shearer cutting unit transmission system[J]. Journal of Vibration and Shock,2019,38(14):169-175,253.
|
[45] |
葛世荣,郝雪弟,田凯,等. 采煤机自主导航截割原理及关键技术[J]. 煤炭学报,2021,46(3):774-788.
GE Shirong,HAO Xuedi,TIAN Kai,et al. Principle and key technology of autonomous navigation cutting for deep coal seam[J]. Journal of China Coal Society,2021,46(3):774-788.
|
[46] |
郝志勇,周正啟,袁智,等. 基于实验测试的采煤机截割载荷的分形分布规律研究[J]. 应用力学学报,2019,36(2):417-423,512.
HAO Zhiyong,ZHOU Zhengqi,YUAN Zhi,et al. Study on fractal distribution law of cutting load of shearer based on experimental tests[J]. Chinese Journal of Applied Mechanics,2019,36(2):417-423,512.
|
[47] |
LI Changpeng,PENG Tianhao,ZHU Yanmin. A cutting pattern recognition method for shearers based on ICEEMDAN and improved grey wolf optimizer algorithm-optimized SVM[J]. Applied Sciences,2021,11(19). DOI: 10.3390/app11199081.
|
[48] |
XU Jing,WANG Zhongbin,TAN Chao,et al. A cutting pattern recognition method for shearers based on improved ensemble empirical mode decomposition and a probabilistic neural network[J]. Sensors,2015,15(11):27721-27737. DOI: 10.3390/s151127721
|
[49] |
SI Lei,WANG Zhongbin,TAN Chao,et al. A feature extraction method based on composite multi-scale permutation entropy and laplacian score for shearer cutting state recognition[J]. Measurement,2019,145:84-93. DOI: 10.1016/j.measurement.2019.05.070
|
[50] |
SI Lei,WANG Zhongbin,TAN Chao,et al. A feature extraction method for shearer cutting pattern recognition based on improved local mean decomposition and multi-scale fuzzy entropy[J]. Current Science:A Fortnightly Journal of Research,2017(11). DOI: 10.18520/CS/V112/I11/2243-2252.
|
[51] |
SI Lei,WANG Zhongbin,TAN Chao,et al. Vibration-based signal analysis for shearer cutting status recognition based on local mean decomposition and fuzzy c-means clustering[J]. Applied Sciences,2017,7(2). DOI: 10.3390/app7020164.
|
[52] |
曹现刚,李彦川,雷卓,等. 采煤机健康状态智能评估方法研究[J]. 工矿自动化,2020,46(6):41-47.
CAO Xiangang,LI Yanchuan,LEI Zhuo,et al. Research on intelligent evaluation method of health state of shearer[J]. Industry and Mine Automation,2020,46(6):41-47.
|
[53] |
田立勇. 基于多源数据融合的采煤机截割载荷识别与预测研究[D]. 阜新:辽宁工程技术大学,2020.
TIAN Liyong. Research on identification and prediction of shearer cutting load based on multi-source data fusion[J]. Fuxin:Liaoning Technical University,2020.
|
[54] |
于宁,孙业新,陈洪月. 基于多源数据融合的采煤机截割载荷预测方法[J]. 中国机械工程,2021,32(10):1247-1253,1259.
YU Ning,SUN Yexin,CHEN Hongyue. Prediction method of cutting loads of shearers based on multi-source data fusion[J]. China Mechanical Engineering,2021,32(10):1247-1253,1259.
|
[55] |
SI Lei,WANG Zhongbin,LIU Xinhua,et al. Cutting state diagnosis for shearer through the vibration of rocker transmission part with an improved probabilistic neural network[J]. Sensors,2016,16(4). DOI: 10.3390/s16040479.
|
[56] |
樊鑫,程建远,王云宏,等. 基于小波散射分解变换的煤矿微震信号智能识别[J]. 煤炭学报,2022,47(7):2722-2731. DOI: 10.13225/j.cnki.jccs.2021.1382
FAN Xin,CHENG Jianyuan,WANG Yunhong,et al. Intelligent recognition of coal mine microseismic signal based on wavelet scattering decomposition transform[J]. Journal of China Coal Society,2022,47(7):2722-2731. DOI: 10.13225/j.cnki.jccs.2021.1382
|
[57] |
DING Hua,YANG Liangliang,YANG Zhaojian. A predictive maintenance method for shearer key parts based on qualitative and quantitative analysis of monitoring data[J]. IEEE Access,2019,7:108684-108702. DOI: 10.1109/ACCESS.2019.2933676
|
[58] |
曹现刚,许欣,雷卓,等. 基于降噪自编码器与改进卷积神经网络的采煤机健康状态识别[J]. 信息与控制,2022,51(1):98-106. DOI: 10.13976/j.cnki.xk.2022.1071
CAO Xiangang,XU Xin,LEI Zhuo,et al. Health status identification of shearer based on denoising autoencoder and improved convolutional neural network[J]. Information and Control,2022,51(1):98-106. DOI: 10.13976/j.cnki.xk.2022.1071
|
[59] |
SI Lei,WANG Zhongbin,LIU Xinhua,et al. A sensing identification method for shearer cutting state based on modified multi-scale fuzzy entropy and support vector machine[J]. Engineering Applications of Artificial Intelligence,2019,78:86-101. DOI: 10.1016/j.engappai.2018.11.003
|
[60] |
SI Lei,WANG Zhongbin,LIU Xinhua,et al. Multi-sensor data fusion identification for shearer cutting conditions based on parallel quasi-newton neural networks and the Dempster-Shafer theory[J]. Sensors,2015,15(11):28772-28795. DOI: 10.3390/s151128772
|
[61] |
彭强. 煤矿大型机械设备滚动轴承故障诊断改进方法研究[J]. 煤炭工程,2023,55(4):141-146.
PENG Qiang. Improved methods for fault diagnosis of rolling bearings for large mechanical equipment in coal mines[J]. Coal Engineering,2023,55(4):141-146.
|
[62] |
WANG Zhongbin,XU Xihua,SI Lei,et al. A dynamic health assessment approach for shearer based on artificial immune algorithm[J]. Computational Intelligence and Neuroscience,2016. DOI: 10.1155/2016/9674942.
|
[63] |
郑云龙. 基于BP神经网络的刮板输送机健康状态实时评估[J]. 煤矿机械,2017,38(6):148-150.
ZHENG Yunlong. Real-time health assessment for scraper conveyor based on BP neural network[J]. Coal Mine Machinery,2017,38(6):148-150.
|
[64] |
ZHAN Jun,WANG Ronglin,YI Lingzhi,et al. Health assessment methods for wind turbines based on power prediction and mahalanobis distance[J]. International Journal of Pattern Recognition and Artificial Intelligence,2019,33(2):1951001.1-1951001.17.
|
[65] |
ATAMURADOV V,MEDJAHER K,CAMCI F,et al. Railway point machine prognostics based on feature fusion and health state assessment[J]. IEEE Transactions on Instrumentation and Measurement,2018,68(8):2691-2704.
|
[66] |
宋传学,肖峰,刘思含,等. 基于无迹卡尔曼滤波的轮毂电动机驱动车辆状态观测[J]. 吉林大学学报(工学版),2016,46(2):333-339.
SONG Chuanxue,XIAO Feng,LIU Sihan,et al. Observation of vehicle state driven by wheel motor based on unscented Kalman filter[J]. Journal of Jilin University (Engineering and Technology Edition),2016,46(2):333-339.
|
[67] |
朱晓荣,刘亚维. 基于模糊综合评判的光伏阵列状态评估[J]. 太阳能学报,2020,41(11):103-111.
ZHU Xiaorong,LIU Yawei. State estimation of photovoltaic array based on fuzzy comprehensive evaluation[J]. Acta Energiae Solaris Sinica,2020,41(11):103-111.
|
[68] |
LIU Zhunga,PAN Quan,DEZERT J,et al. Combination of classifiers with optimal weight based on evidential reasoning[J]. IEEE Transactions on Fuzzy Systems,2018,26(3):1217-1230. DOI: 10.1109/TFUZZ.2017.2718483
|
[69] |
YIN Xiaojing,ZHANG Bangcheng,ZHOU Zhijie,et al. A new health estimation model for CNC machine tool based on infinite irrelevance and belief rule base[J]. Microelectronics Reliability,2018,84:187-196. DOI: 10.1016/j.microrel.2018.03.031
|
[70] |
YANG Yifei,ZHANG Maohui,DAI Yuewei. A fuzzy comprehensive CS-SVR model-based health status evaluation of radar[J]. Plos One,2019,14(3):1-20.
|
[71] |
CAI Baoping,LIU Yonghong,LIU Zengkai,et al. Application of Bayesian networks in reliability evaluation[J]. IEEE Transactions on Industrial Informatics,2019,15(4):2146-2157. DOI: 10.1109/TII.2018.2858281
|
[72] |
BEHNOUSH R,YI S. Deep learning for prognostics and health management:state of the art,challenges,and opportunities[J]. Measurement,2020,163:107929. DOI: 10.1016/j.measurement.2020.107929.
|
[73] |
丁飞,王谦. 液压支架结构疲劳动态可靠性评估方法[J]. 中国安全科学学报,2015,25(6):86-90.
DING Fei,WANG Qian. Fatigue dynamic reliability assessment method of hydraulic support structure[J]. China Safety Science Journal,2015,25(6):86-90.
|
[74] |
宋宇宁,徐晓辰. 基于SolidWorks和ANSYS的液压支架顶梁疲劳可靠性分析[J]. 煤炭工程,2019,51(1):91-95.
SONG Yuning,XU Xiaochen. Analysis of the beam fatigue reliability of hydraulic support based on ANSYS and SolidWorks[J]. Coal Engineering,2019,51(1):91-95.
|
[75] |
LIN Lingyan,LIN Chen,GENG Pulong,et al. Aging life evaluation of coal mining flexible EPR cables under multi-stresses[J]. IEEE Access,2020,8:53539-53546. DOI: 10.1109/ACCESS.2020.2981359
|
[76] |
XING Zhizhong,GUO Wei. Analysis and research on working performance of shearer based on discrete element method[J]. IEEE Access,2019,7:121321-121331. DOI: 10.1109/ACCESS.2019.2937569
|
[77] |
赖明荣. 基于状态检测的液压支架寿命预测方法研究[D]. 太原:太原理工大学,2013.
LAI Mingrong. Prediction method of hydraulic support life based on state inspection[D]. Taiyuan:Taiyuan University of Technology,2013.
|
[78] |
于健浩,祝凌甫,徐刚. 煤矿智能综采工作面安全高效开采适应性评价[J]. 煤炭科学技术,2019,47(3):60-65.
YU Jianhao,ZHU Lingfu,XU Gang. Safety and high efficiency adaptability evaluation of coal mine intelligent fully-mechanized mining face[J]. Coal Science and Technology,2019,47(3):60-65.
|
[79] |
闫向彤,董鹏辉,熊友錕,等. 基于PCA的采煤机健康状态云模型评估分析[J]. 煤炭工程,2023,55(6):152-157.
YAN Xiangtong,DONG Penghui,XIONG Youkun,et al. Cloud model evaluation for health state of coal shearer based on PCA[J]. Coal Engineering,2023,55(6):152-157.
|
[80] |
SI Lei,WANG Zhongbin,LIU Ze,et al. Health condition evaluation for a shearer through the integration of a fuzzy neural network and improved particle swarm optimization algorithm[J]. Applied Sciences,2016,6(6):171. DOI: 10.3390/app6060171
|
[81] |
赵丽娟,王雅东,王斌. 含夹矸煤层条件下采煤机螺旋滚筒工作性能分析与预测[J]. 中国机械工程,2021,32(8):976-986. DOI: 10.3969/j.issn.1004-132X.2021.08.012
ZHAO Lijuan,WANG Yadong,WANG Bin. Analysis and prediction of working performance of shearer spiral drums under coal seam with gangue[J]. China Mechanical Engineering,2021,32(8):976-986. DOI: 10.3969/j.issn.1004-132X.2021.08.012
|
[82] |
刘晓波,孔屹刚,李涛,等. 采煤机调高泵隐半马尔可夫模型磨损故障预测[J]. 科学技术与工程,2020,20(29):11980-11986. DOI: 10.3969/j.issn.1671-1815.2020.29.023
LIU Xiaobo,KONG Yigang,LI Tao,et al. Wear fault prognostics of hidden semi-markov model of shearer pump[J]. Science Technology and Engineering,2020,20(29):11980-11986. DOI: 10.3969/j.issn.1671-1815.2020.29.023
|
[83] |
SI Lei,WANG Zhongbin,LIU Xinhua. A novel identification approach for shearer running status through integration of rough sets and improved wavelet neural network[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2016,230(16):2792-2805.
|
[84] |
曹现刚,陈瑞昊,伍宇泽,等. 基于CNN−XGBoost的采煤机健康状态评估[J]. 煤炭技术,2022,41(11):173-176. DOI: 10.13301/j.cnki.ct.2022.11.040
CAO Xiangang,CHEN Ruihao,WU Yuze,et al. Health state assessment of coal shearer based on CNN-XGBoost[J]. Coal Technology,2022,41(11):173-176. DOI: 10.13301/j.cnki.ct.2022.11.040
|
[85] |
陈相丞. 采煤机摇臂系统维修状态评估方法研究[D]. 徐州:中国矿业大学,2018.
CHEN Xiangcheng. Study on maintenance state evaluation methods of rocker ARM system of shearer[D]. Xuzhou:China University of Mining and Technology,2018.
|
[86] |
丁华,杨亮亮,杨兆建,等. 数字孪生与深度学习融合驱动的采煤机健康状态预测[J]. 中国机械工程,2020,31(7):815-823.
DING Hua,YANG Liangliang,YANG Zhaojian,et al. Health prediction of shearers driven by digital twin and deep learning[J]. China Mechanical Engineering,2020,31(7):815-823.
|
[87] |
曹怀建,贾永森,刘毅,等. 基于深度学习与SOM神经网络融合的采煤机截齿寿命预测研究[J]. 煤矿机械,2022,43(2):69-72.
CAO Huaijian,JIA Yongsen,LIU Yi,et al. Shearer pick life prediction based on deep learning and SOM neural network fusion[J]. Coal Mine Machinery,2022,43(2):69-72.
|
[1] | CAI Jiahao, WANG Qianjin, FU Xiaorong, MA Xiaoping. Study on the optimal control of supply air volume in switchover process of mine main ventilators[J]. Journal of Mine Automation, 2023, 49(1): 140-145, 161. DOI: 10.13272/j.issn.1671-251x.2022050059 |
[2] | CUI Chuanbo, JIANG Shuguang, WANG Kai, SHAO Hao, WU Zhenyan. Adjustment of mine air volume based on air volume dispatchable model[J]. Journal of Mine Automation, 2016, 42(2): 39-43. DOI: 10.13272/j.issn.1671-251x.2016.02.010 |
[3] | HUAI Li, TAN Yi-chuan, CHENG Yu-long. Automatic Control System of Coal Mine Air Compressor Based on PLC[J]. Journal of Mine Automation, 2012, 38(4): 13-16. |
[4] | WANG Li-hua, WANG Xiao-song, WEI Guang-jin. Design of Automatic Monitoring and Control System of Mine Main Ventilator[J]. Journal of Mine Automation, 2010, 36(12): 95-99. |
[5] | WU Hai-wei, ZHANG Yi-ming, WU Zheng-yan, JIANG Shu-guang, WANG Lan-yun, WANG Jie. Development,Analysis and Comparison of Technologies of Mine-used Automatic Air Doors[J]. Journal of Mine Automation, 2010, 36(1): 61-65. |
[6] | HUANG Wei. Analysis and Discussion on Disadvantages of Automatic Power off of Monitoring and Control of Local Ventilator[J]. Journal of Mine Automation, 2009, 35(8): 75-78. |
[7] | CUI Guang-liang, ZHU Hong-yun, LIU Cheng-liang. Automatic Monitoring and Control System for Mine-used Main Ventilation Based on SLC500 PLC[J]. Journal of Mine Automation, 2009, 35(5): 90-92. |
[8] | TAN Chang-sen, SUN Peng, GUO Feng, GU Zhi-peng. Design of Automatic Monitoring and COntrol System of Mine Main Ventilator Based on PLC[J]. Journal of Mine Automation, 2007, 33(6): 106-108. |
[9] | HUANG Wen-fang, SUN Wei, YAN Gui. Application of Fuzzy Controller in the Automatic Adjustment for Fume Exhaust Throttle[J]. Journal of Mine Automation, 2007, 33(2): 33-35. |